Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang, Ji Wang
{"title":"符号执行的综合求解策略","authors":"Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang, Ji Wang","doi":"10.1145/3460319.3464815","DOIUrl":null,"url":null,"abstract":"Symbolic execution is powered by constraint solving. The advancement of constraint solving boosts the development and the applications of symbolic execution. Modern SMT solvers provide the mechanism of solving strategy that allows the users to control the solving procedure, which significantly improves the solver's generalization ability. We observe that the symbolic executions of different programs are actually different constraint solving problems. Therefore, we propose synthesizing a solving strategy for a program to fit the program's symbolic execution best. To achieve this, we divide symbolic execution into two stages. The SMT formulas solved in the first stage are used to online synthesize a solving strategy, which is then employed during the constraint solving in the second stage. We propose novel synthesis algorithms that combine offline trained deep learning models and online tuning to synthesize the solving strategy. The algorithms balance the synthesis overhead and the improvement achieved by the synthesized solving strategy. We have implemented our method on the state-of-the-art symbolic execution engine KLEE for C programs. The results of the extensive experiments indicate that our method effectively improves the efficiency of symbolic execution. On average, our method increases the numbers of queries and paths by 58.76% and 66.11%, respectively. Besides, we applied our method to a Java Pathfinder-based concolic execution engine to validate the generalization ability. The results indicate that our method has a good generalization ability and increases the numbers of queries and paths by 100.24% and 102.6% for the benchmark Java programs, respectively.","PeriodicalId":188008,"journal":{"name":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Synthesize solving strategy for symbolic execution\",\"authors\":\"Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang, Ji Wang\",\"doi\":\"10.1145/3460319.3464815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symbolic execution is powered by constraint solving. The advancement of constraint solving boosts the development and the applications of symbolic execution. Modern SMT solvers provide the mechanism of solving strategy that allows the users to control the solving procedure, which significantly improves the solver's generalization ability. We observe that the symbolic executions of different programs are actually different constraint solving problems. Therefore, we propose synthesizing a solving strategy for a program to fit the program's symbolic execution best. To achieve this, we divide symbolic execution into two stages. The SMT formulas solved in the first stage are used to online synthesize a solving strategy, which is then employed during the constraint solving in the second stage. We propose novel synthesis algorithms that combine offline trained deep learning models and online tuning to synthesize the solving strategy. The algorithms balance the synthesis overhead and the improvement achieved by the synthesized solving strategy. We have implemented our method on the state-of-the-art symbolic execution engine KLEE for C programs. The results of the extensive experiments indicate that our method effectively improves the efficiency of symbolic execution. On average, our method increases the numbers of queries and paths by 58.76% and 66.11%, respectively. Besides, we applied our method to a Java Pathfinder-based concolic execution engine to validate the generalization ability. The results indicate that our method has a good generalization ability and increases the numbers of queries and paths by 100.24% and 102.6% for the benchmark Java programs, respectively.\",\"PeriodicalId\":188008,\"journal\":{\"name\":\"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460319.3464815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460319.3464815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesize solving strategy for symbolic execution
Symbolic execution is powered by constraint solving. The advancement of constraint solving boosts the development and the applications of symbolic execution. Modern SMT solvers provide the mechanism of solving strategy that allows the users to control the solving procedure, which significantly improves the solver's generalization ability. We observe that the symbolic executions of different programs are actually different constraint solving problems. Therefore, we propose synthesizing a solving strategy for a program to fit the program's symbolic execution best. To achieve this, we divide symbolic execution into two stages. The SMT formulas solved in the first stage are used to online synthesize a solving strategy, which is then employed during the constraint solving in the second stage. We propose novel synthesis algorithms that combine offline trained deep learning models and online tuning to synthesize the solving strategy. The algorithms balance the synthesis overhead and the improvement achieved by the synthesized solving strategy. We have implemented our method on the state-of-the-art symbolic execution engine KLEE for C programs. The results of the extensive experiments indicate that our method effectively improves the efficiency of symbolic execution. On average, our method increases the numbers of queries and paths by 58.76% and 66.11%, respectively. Besides, we applied our method to a Java Pathfinder-based concolic execution engine to validate the generalization ability. The results indicate that our method has a good generalization ability and increases the numbers of queries and paths by 100.24% and 102.6% for the benchmark Java programs, respectively.