高风险破坏区含复杂配筋解的边坡稳定性数值模拟——特殊案例研究

Ngoc-anh Pham, P. Osiński, N. Do, E. Koda, M. V. Nguyen, D. Bui, Ngan Van Tao
{"title":"高风险破坏区含复杂配筋解的边坡稳定性数值模拟——特殊案例研究","authors":"Ngoc-anh Pham, P. Osiński, N. Do, E. Koda, M. V. Nguyen, D. Bui, Ngan Van Tao","doi":"10.46326/jmes.2021.62(6).07","DOIUrl":null,"url":null,"abstract":"The rapid economic development of Vietnam triggers a number of challenges in all sectors including infrastructure design and execution. New development plans and lack of space in densely populated and economically valuable areas creates a need for complex engineering solutions to meet the demand. The present research is a case study investigating reengineered vast natural slope to meet all requirements for geotechnical safety such as maximum displacements and factor of safety. Complex ground conditions and significant dimensions of the slope made the entire structure very likely to cause major risk for the future development plan of the site. Due to complex conditions, the slope was divided into 4 main sections. Each section was reinforced using a combination of soil nails, ground anchors, drainage systems and micro piles, of 19m for a single pile. Due to very much limited space available new geometry of the slope was designed for inclination reaching 1:0.3. Based on numerical modelling and computation the results revealed that the maximum lateral displacements felt in a range of 37-50x10-3 m and the factor of safety was 1.56-1.65, depending on a section and analysed scenario. The computations allowed proposing combined geotechnical solutions for very much challenging sites, assuring high safety standards and fitting the entire design within a limited available area.","PeriodicalId":170167,"journal":{"name":"Journal of Mining and Earth Sciences","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical modeling of slope stability incorporating complex reinforcement solution in high-risk failure area- unusual case study\",\"authors\":\"Ngoc-anh Pham, P. Osiński, N. Do, E. Koda, M. V. Nguyen, D. Bui, Ngan Van Tao\",\"doi\":\"10.46326/jmes.2021.62(6).07\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid economic development of Vietnam triggers a number of challenges in all sectors including infrastructure design and execution. New development plans and lack of space in densely populated and economically valuable areas creates a need for complex engineering solutions to meet the demand. The present research is a case study investigating reengineered vast natural slope to meet all requirements for geotechnical safety such as maximum displacements and factor of safety. Complex ground conditions and significant dimensions of the slope made the entire structure very likely to cause major risk for the future development plan of the site. Due to complex conditions, the slope was divided into 4 main sections. Each section was reinforced using a combination of soil nails, ground anchors, drainage systems and micro piles, of 19m for a single pile. Due to very much limited space available new geometry of the slope was designed for inclination reaching 1:0.3. Based on numerical modelling and computation the results revealed that the maximum lateral displacements felt in a range of 37-50x10-3 m and the factor of safety was 1.56-1.65, depending on a section and analysed scenario. The computations allowed proposing combined geotechnical solutions for very much challenging sites, assuring high safety standards and fitting the entire design within a limited available area.\",\"PeriodicalId\":170167,\"journal\":{\"name\":\"Journal of Mining and Earth Sciences\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Earth Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46326/jmes.2021.62(6).07\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Earth Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46326/jmes.2021.62(6).07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

越南经济的快速发展引发了包括基础设施设计和执行在内的各个领域的许多挑战。在人口密集和经济价值高的地区,新的发展计划和缺乏空间导致需要复杂的工程解决方案来满足需求。本文以大型天然边坡为例,研究了满足最大位移和安全系数等岩土安全要求的再造工程。复杂的地面条件和显著的坡度使整个结构很可能对场地的未来发展计划造成重大风险。由于条件复杂,将边坡划分为4个主要断面。每个部分都使用土钉、地锚、排水系统和微桩进行加固,单桩长19米。由于可用空间非常有限,设计了倾角达到1:0.3的新斜坡几何形状。基于数值模拟和计算结果表明,根据断面和分析情景,最大横向位移范围为37 ~ 50x10 ~ 3m,安全系数为1.56 ~ 1.65。计算允许为非常具有挑战性的场地提出组合岩土工程解决方案,确保高安全标准,并在有限的可用区域内适应整个设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical modeling of slope stability incorporating complex reinforcement solution in high-risk failure area- unusual case study
The rapid economic development of Vietnam triggers a number of challenges in all sectors including infrastructure design and execution. New development plans and lack of space in densely populated and economically valuable areas creates a need for complex engineering solutions to meet the demand. The present research is a case study investigating reengineered vast natural slope to meet all requirements for geotechnical safety such as maximum displacements and factor of safety. Complex ground conditions and significant dimensions of the slope made the entire structure very likely to cause major risk for the future development plan of the site. Due to complex conditions, the slope was divided into 4 main sections. Each section was reinforced using a combination of soil nails, ground anchors, drainage systems and micro piles, of 19m for a single pile. Due to very much limited space available new geometry of the slope was designed for inclination reaching 1:0.3. Based on numerical modelling and computation the results revealed that the maximum lateral displacements felt in a range of 37-50x10-3 m and the factor of safety was 1.56-1.65, depending on a section and analysed scenario. The computations allowed proposing combined geotechnical solutions for very much challenging sites, assuring high safety standards and fitting the entire design within a limited available area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ESP Application for Oil Production in Naturally Fractured Granitic Basement Reservoir Comparison analytical hierarchy process (AHP) and frequency ratio (FR) method in assessment of landslide susceptibility. A case study in Van Yen district, Yen Bai province Deep geological structure of An Chau trough base on new study data Assessment of liquefaction potential of sand distributed in the 1 District, Ho Chi Minh city Geotechnical zoning in Hai Duong province for construction planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1