基于区域相似度的细胞内图像分割算法选择

S. Takemoto, H. Yokota
{"title":"基于区域相似度的细胞内图像分割算法选择","authors":"S. Takemoto, H. Yokota","doi":"10.1109/ISDA.2009.205","DOIUrl":null,"url":null,"abstract":"This paper deals with the problem of intracellular image segmentation. Our goal is to propose an algorithm selection framework that has the potential to be general enough to be used for a variety of intracellular image segmentation tasks. With this framework, an optimal algorithm suited to each segmentation task can be selected automatically by our proposed evaluation criteria derived from region similarity of image features and boundary shape. Furthermore, using our framework, we can rank different algorithms, as well as define each algorithm's parameters. We tested our prototype framework on confocal microscope images and showed that application of these criteria gave highly accurate segmentation results without missing any biologically important image characteristics.","PeriodicalId":330324,"journal":{"name":"2009 Ninth International Conference on Intelligent Systems Design and Applications","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Algorithm Selection for Intracellular Image Segmentation Based on Region Similarity\",\"authors\":\"S. Takemoto, H. Yokota\",\"doi\":\"10.1109/ISDA.2009.205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with the problem of intracellular image segmentation. Our goal is to propose an algorithm selection framework that has the potential to be general enough to be used for a variety of intracellular image segmentation tasks. With this framework, an optimal algorithm suited to each segmentation task can be selected automatically by our proposed evaluation criteria derived from region similarity of image features and boundary shape. Furthermore, using our framework, we can rank different algorithms, as well as define each algorithm's parameters. We tested our prototype framework on confocal microscope images and showed that application of these criteria gave highly accurate segmentation results without missing any biologically important image characteristics.\",\"PeriodicalId\":330324,\"journal\":{\"name\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Ninth International Conference on Intelligent Systems Design and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2009.205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Intelligent Systems Design and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2009.205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文研究了细胞内图像分割问题。我们的目标是提出一种算法选择框架,该框架具有足够通用的潜力,可用于各种细胞内图像分割任务。在此框架下,根据图像特征的区域相似度和边界形状给出的评价标准,可以自动选择适合每个分割任务的最优算法。此外,使用我们的框架,我们可以对不同的算法进行排序,并定义每个算法的参数。我们在共聚焦显微镜图像上测试了我们的原型框架,并表明这些标准的应用提供了高度准确的分割结果,而不会丢失任何生物学上重要的图像特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithm Selection for Intracellular Image Segmentation Based on Region Similarity
This paper deals with the problem of intracellular image segmentation. Our goal is to propose an algorithm selection framework that has the potential to be general enough to be used for a variety of intracellular image segmentation tasks. With this framework, an optimal algorithm suited to each segmentation task can be selected automatically by our proposed evaluation criteria derived from region similarity of image features and boundary shape. Furthermore, using our framework, we can rank different algorithms, as well as define each algorithm's parameters. We tested our prototype framework on confocal microscope images and showed that application of these criteria gave highly accurate segmentation results without missing any biologically important image characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EACImpute: An Evolutionary Algorithm for Clustering-Based Imputation An FPGA Based Arrhythmia Recognition System for Wearable Applications Knowledge Discovery Approaches for Early Detection of Decompensation Conditions in Heart Failure Patients Evaluating an Intelligent Business System with a Fuzzy Multi-criteria Approach Time Analysis of Forum Evolution as Support Tool for E-Moderating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1