工业4.0智能制造自动化趋势探索机器学习

W. Hoover, David A. Guerra-Zubiaga, Jeremy Banta, Kevin Wandene, Kaleb Key, Germanico Gonzalez-Badillo
{"title":"工业4.0智能制造自动化趋势探索机器学习","authors":"W. Hoover, David A. Guerra-Zubiaga, Jeremy Banta, Kevin Wandene, Kaleb Key, Germanico Gonzalez-Badillo","doi":"10.1115/imece2022-96092","DOIUrl":null,"url":null,"abstract":"\n Current trends indicate that the manufacturing industry is moving toward implementing Industry 4.0 concepts in search of improved adaptability, efficiency, sustainability, and advanced technological implementation. Some of these new technologies include virtual process simulation, automation, machine learning technologies, and the use of IIoT to innovate solutions.\n Researchers are focusing on ways to improve the rate and economy of implementing Industry 4.0 concepts in current manufacturing processes. This paper focuses on the implementation of a combination of specific industry 4.0 concepts in a lab environment. There will also be a case study where this research will be applied, and the results discussed. Digital Twins is also a proposed component of the research case study that is implemented using Siemens PLM Tecnomatix tool. Future work is to improve the efficiency of the manufacturing, pick-and-place operation using Deep Reinforcement learning.","PeriodicalId":113474,"journal":{"name":"Volume 2B: Advanced Manufacturing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Industry 4.0 Trends in Intelligent Manufacturing Automation Exploring Machine Learning\",\"authors\":\"W. Hoover, David A. Guerra-Zubiaga, Jeremy Banta, Kevin Wandene, Kaleb Key, Germanico Gonzalez-Badillo\",\"doi\":\"10.1115/imece2022-96092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Current trends indicate that the manufacturing industry is moving toward implementing Industry 4.0 concepts in search of improved adaptability, efficiency, sustainability, and advanced technological implementation. Some of these new technologies include virtual process simulation, automation, machine learning technologies, and the use of IIoT to innovate solutions.\\n Researchers are focusing on ways to improve the rate and economy of implementing Industry 4.0 concepts in current manufacturing processes. This paper focuses on the implementation of a combination of specific industry 4.0 concepts in a lab environment. There will also be a case study where this research will be applied, and the results discussed. Digital Twins is also a proposed component of the research case study that is implemented using Siemens PLM Tecnomatix tool. Future work is to improve the efficiency of the manufacturing, pick-and-place operation using Deep Reinforcement learning.\",\"PeriodicalId\":113474,\"journal\":{\"name\":\"Volume 2B: Advanced Manufacturing\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2B: Advanced Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-96092\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2B: Advanced Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-96092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前的趋势表明,制造业正朝着实施工业4.0概念的方向发展,以寻求更好的适应性、效率、可持续性和先进的技术实施。其中一些新技术包括虚拟过程仿真、自动化、机器学习技术以及使用工业物联网来创新解决方案。研究人员正在关注如何提高在当前制造过程中实施工业4.0概念的速度和经济性。本文的重点是在实验室环境中实现特定工业4.0概念的组合。还将有一个案例研究,该研究将被应用,并讨论结果。Digital Twins也是使用Siemens PLM Tecnomatix工具实施的研究案例研究的建议组成部分。未来的工作是利用深度强化学习来提高制造、取放操作的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Industry 4.0 Trends in Intelligent Manufacturing Automation Exploring Machine Learning
Current trends indicate that the manufacturing industry is moving toward implementing Industry 4.0 concepts in search of improved adaptability, efficiency, sustainability, and advanced technological implementation. Some of these new technologies include virtual process simulation, automation, machine learning technologies, and the use of IIoT to innovate solutions. Researchers are focusing on ways to improve the rate and economy of implementing Industry 4.0 concepts in current manufacturing processes. This paper focuses on the implementation of a combination of specific industry 4.0 concepts in a lab environment. There will also be a case study where this research will be applied, and the results discussed. Digital Twins is also a proposed component of the research case study that is implemented using Siemens PLM Tecnomatix tool. Future work is to improve the efficiency of the manufacturing, pick-and-place operation using Deep Reinforcement learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Methodology for Digital Twins of Product Lifecycle Supported by Digital Thread Thermal Analysis and Design of Self-Heating Molds Using Large-Scale Additive Manufacturing for Out-of-Autoclave Applications Conveyer-Less Matrix Assembly Layout Design to Maximize Labor Productivity and Footprint Usage A Comparative Numerical Investigation on Machining of Laminated and 3D Printed CFRP Composites Modelling of Surface Roughness in CO2 Laser Ablation of Aluminium-Coated Polymethyl Methacrylate (PMMA) Using Adaptive Neuro-Fuzzy Inference System (ANFIS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1