普通话口音英语语音错误检测与诊断

Subash Khanal, Michael T. Johnson, M. Soleymanpour, Narjes Bozorg
{"title":"普通话口音英语语音错误检测与诊断","authors":"Subash Khanal, Michael T. Johnson, M. Soleymanpour, Narjes Bozorg","doi":"10.1109/sped53181.2021.9587408","DOIUrl":null,"url":null,"abstract":"This paper presents a Mispronunciation Detection and Diagnosis (MDD) system based on a range of Automatic Speech Recognition (ASR) models and feature types. The goals of this research are to assess the ability of speech recognition systems to detect and diagnose the common pronunciation errors seen in non-native speakers (L2) of English and to assess the contribution of the information offered by Electromagnetic Articulography (EMA) data in improving the performance of such MDD systems. To evaluate the ability of the ASR systems to detect and diagnose pronunciation errors, the recognized sequence of phonemes generated by the ASR models were aligned with human-labeled phonetic transcripts as well as with the original phonetic prompts. This three-way alignment determined the MDD related metrics of the ASR system. System architectures included GMM-HMM, DNN, and RNN based ASR engines for the MDD system. Articulatory features derived from the Electromagnetic Articulography corpus of Mandarin-Accented English (EMA-MAE) were utilized along with acoustic features to compare the performance of MDD systems. The best performing system using a combination of acoustic and articulatory features had an accuracy of 82.4%, diagnostic accuracy of 75.8% and a false rejection rate of 17.2%.","PeriodicalId":193702,"journal":{"name":"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","volume":"1997 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mispronunciation Detection and Diagnosis for Mandarin Accented English Speech\",\"authors\":\"Subash Khanal, Michael T. Johnson, M. Soleymanpour, Narjes Bozorg\",\"doi\":\"10.1109/sped53181.2021.9587408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Mispronunciation Detection and Diagnosis (MDD) system based on a range of Automatic Speech Recognition (ASR) models and feature types. The goals of this research are to assess the ability of speech recognition systems to detect and diagnose the common pronunciation errors seen in non-native speakers (L2) of English and to assess the contribution of the information offered by Electromagnetic Articulography (EMA) data in improving the performance of such MDD systems. To evaluate the ability of the ASR systems to detect and diagnose pronunciation errors, the recognized sequence of phonemes generated by the ASR models were aligned with human-labeled phonetic transcripts as well as with the original phonetic prompts. This three-way alignment determined the MDD related metrics of the ASR system. System architectures included GMM-HMM, DNN, and RNN based ASR engines for the MDD system. Articulatory features derived from the Electromagnetic Articulography corpus of Mandarin-Accented English (EMA-MAE) were utilized along with acoustic features to compare the performance of MDD systems. The best performing system using a combination of acoustic and articulatory features had an accuracy of 82.4%, diagnostic accuracy of 75.8% and a false rejection rate of 17.2%.\",\"PeriodicalId\":193702,\"journal\":{\"name\":\"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)\",\"volume\":\"1997 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/sped53181.2021.9587408\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sped53181.2021.9587408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于自动语音识别(ASR)模型和特征类型的语音错误检测与诊断系统。本研究的目的是评估语音识别系统检测和诊断非英语母语者(L2)常见发音错误的能力,并评估电磁发音图(EMA)数据提供的信息在改善此类MDD系统性能方面的贡献。为了评估ASR系统检测和诊断语音错误的能力,我们将ASR模型生成的识别音素序列与人工标记的语音转录本以及原始语音提示进行比对。这种三向对齐确定了ASR系统的MDD相关度量。系统架构包括用于MDD系统的基于GMM-HMM、DNN和RNN的ASR引擎。利用电磁发音语料库(EMA-MAE)的发音特征和声学特征来比较MDD系统的性能。结合声学和发音特征的最佳系统准确率为82.4%,诊断准确率为75.8%,假排斥率为17.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mispronunciation Detection and Diagnosis for Mandarin Accented English Speech
This paper presents a Mispronunciation Detection and Diagnosis (MDD) system based on a range of Automatic Speech Recognition (ASR) models and feature types. The goals of this research are to assess the ability of speech recognition systems to detect and diagnose the common pronunciation errors seen in non-native speakers (L2) of English and to assess the contribution of the information offered by Electromagnetic Articulography (EMA) data in improving the performance of such MDD systems. To evaluate the ability of the ASR systems to detect and diagnose pronunciation errors, the recognized sequence of phonemes generated by the ASR models were aligned with human-labeled phonetic transcripts as well as with the original phonetic prompts. This three-way alignment determined the MDD related metrics of the ASR system. System architectures included GMM-HMM, DNN, and RNN based ASR engines for the MDD system. Articulatory features derived from the Electromagnetic Articulography corpus of Mandarin-Accented English (EMA-MAE) were utilized along with acoustic features to compare the performance of MDD systems. The best performing system using a combination of acoustic and articulatory features had an accuracy of 82.4%, diagnostic accuracy of 75.8% and a false rejection rate of 17.2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Segmentation of Texts based on Stylistic Features Romanian printed language, statistical independence and the type II statistical error Comparison in Suprasegmental Characteristics between Typical and Dysarthric Talkers at Varying Severity Levels Neural Networks for Automatic Environmental Sound Recognition Speaker Verification Experiments using Identity Vectors, on a Romanian Speakers Corpus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1