涉及对称输入矩阵(SYMM)的分布式存储密集矩阵乘法的算术强度

E. Agullo, A. Buttari, O. Coulaud, Lionel Eyraud-Dubois, Mathieu Faverge, Alain Franc, A. Guermouche, Antoine Jego, Romain Peressoni, Florent Pruvost
{"title":"涉及对称输入矩阵(SYMM)的分布式存储密集矩阵乘法的算术强度","authors":"E. Agullo, A. Buttari, O. Coulaud, Lionel Eyraud-Dubois, Mathieu Faverge, Alain Franc, A. Guermouche, Antoine Jego, Romain Peressoni, Florent Pruvost","doi":"10.1109/IPDPS54959.2023.00044","DOIUrl":null,"url":null,"abstract":"Dense matrix multiplication involving a symmetric input matrix (SYMM) is implemented in reference distributed-memory codes with the same data distribution as its general analogue (GEMM). We show that, when the symmetric matrix is dominant, such a 2D block-cyclic (2D BC) scheme leads to a lower arithmetic intensity (AI) of SYMM than that of GEMM by a factor of 2. We propose alternative data distributions preserving the memory benefit of SYMM of storing only half of the matrix while achieving up to the same AI as GEMM. We also show that, in the case we can afford the same memory footprint as GEMM, SYMM can achieve a higher AI. We propose a task-based design of SYMM independent of the data distribution. This design allows for scalable A-stationary SYMM with which all discussed data distributions, may they be very irregular, can be easily assessed. We have integrated the resulting code in a reduction dimension algorithm involving a randomized singular value decomposition dominated by SYMM. An experimental study shows a compelling impact on performance.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Arithmetic Intensity of Distributed-Memory Dense Matrix Multiplication Involving a Symmetric Input Matrix (SYMM)\",\"authors\":\"E. Agullo, A. Buttari, O. Coulaud, Lionel Eyraud-Dubois, Mathieu Faverge, Alain Franc, A. Guermouche, Antoine Jego, Romain Peressoni, Florent Pruvost\",\"doi\":\"10.1109/IPDPS54959.2023.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dense matrix multiplication involving a symmetric input matrix (SYMM) is implemented in reference distributed-memory codes with the same data distribution as its general analogue (GEMM). We show that, when the symmetric matrix is dominant, such a 2D block-cyclic (2D BC) scheme leads to a lower arithmetic intensity (AI) of SYMM than that of GEMM by a factor of 2. We propose alternative data distributions preserving the memory benefit of SYMM of storing only half of the matrix while achieving up to the same AI as GEMM. We also show that, in the case we can afford the same memory footprint as GEMM, SYMM can achieve a higher AI. We propose a task-based design of SYMM independent of the data distribution. This design allows for scalable A-stationary SYMM with which all discussed data distributions, may they be very irregular, can be easily assessed. We have integrated the resulting code in a reduction dimension algorithm involving a randomized singular value decomposition dominated by SYMM. An experimental study shows a compelling impact on performance.\",\"PeriodicalId\":343684,\"journal\":{\"name\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS54959.2023.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

涉及对称输入矩阵(SYMM)的密集矩阵乘法在参考分布式存储代码中实现,其数据分布与其一般模拟(GEMM)相同。我们证明,当对称矩阵占主导时,这种2D块循环(2D BC)方案导致SYMM的算术强度(AI)比GEMM的低2倍。我们提出了替代的数据分布,保留了SYMM的内存优势,仅存储矩阵的一半,同时实现了与GEMM相同的AI。我们还表明,在我们可以负担得起与GEMM相同的内存占用的情况下,SYMM可以实现更高的AI。我们提出了一种独立于数据分布的基于任务的SYMM设计。这种设计允许可扩展的A-stationary SYMM,所有讨论的数据分布,可能是非常不规则的,可以很容易地评估。我们将结果代码集成到一个以SYMM为主导的随机奇异值分解的降维算法中。一项实验研究显示了对性能的显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Arithmetic Intensity of Distributed-Memory Dense Matrix Multiplication Involving a Symmetric Input Matrix (SYMM)
Dense matrix multiplication involving a symmetric input matrix (SYMM) is implemented in reference distributed-memory codes with the same data distribution as its general analogue (GEMM). We show that, when the symmetric matrix is dominant, such a 2D block-cyclic (2D BC) scheme leads to a lower arithmetic intensity (AI) of SYMM than that of GEMM by a factor of 2. We propose alternative data distributions preserving the memory benefit of SYMM of storing only half of the matrix while achieving up to the same AI as GEMM. We also show that, in the case we can afford the same memory footprint as GEMM, SYMM can achieve a higher AI. We propose a task-based design of SYMM independent of the data distribution. This design allows for scalable A-stationary SYMM with which all discussed data distributions, may they be very irregular, can be easily assessed. We have integrated the resulting code in a reduction dimension algorithm involving a randomized singular value decomposition dominated by SYMM. An experimental study shows a compelling impact on performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-Accelerated Error-Bounded Compression Framework for Quantum Circuit Simulations Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs Smart Redbelly Blockchain: Reducing Congestion for Web3 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1