个性化异构感知联邦搜索,提高准确性和能源效率

Zhao Yang, Qingshuang Sun
{"title":"个性化异构感知联邦搜索,提高准确性和能源效率","authors":"Zhao Yang, Qingshuang Sun","doi":"10.1145/3508352.3549403","DOIUrl":null,"url":null,"abstract":"Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing. However, due to the wide distribution of different types of devices, FL faces severe heterogeneity issues. The accuracy and efficiency of FL deployment at the edge are severely impacted by heterogeneous data and heterogeneous systems. In this paper, we perform joint FL model personalization for heterogeneous systems and heterogeneous data to address the challenges posed by heterogeneities. We begin by using model inference efficiency as a starting point to personalize network scale on each node. Furthermore, it can be used to guide the efficient FL training process, which can help to ease the problem of straggler devices and improve FL’s energy efficiency. During FL training, federated search is then used to acquire highly accurate personalized network structures. By taking into account the unique characteristics of FL deployment at edge devices, the personalized network structures obtained by our federated search framework with a lightweight search controller can achieve competitive accuracy with state-of-the-art (SOTA) methods, while reducing inference and training energy consumption by up to 3.57× and 1.82×, respectively.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"9 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized Heterogeneity-aware Federated Search Towards Better Accuracy and Energy Efficiency\",\"authors\":\"Zhao Yang, Qingshuang Sun\",\"doi\":\"10.1145/3508352.3549403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing. However, due to the wide distribution of different types of devices, FL faces severe heterogeneity issues. The accuracy and efficiency of FL deployment at the edge are severely impacted by heterogeneous data and heterogeneous systems. In this paper, we perform joint FL model personalization for heterogeneous systems and heterogeneous data to address the challenges posed by heterogeneities. We begin by using model inference efficiency as a starting point to personalize network scale on each node. Furthermore, it can be used to guide the efficient FL training process, which can help to ease the problem of straggler devices and improve FL’s energy efficiency. During FL training, federated search is then used to acquire highly accurate personalized network structures. By taking into account the unique characteristics of FL deployment at edge devices, the personalized network structures obtained by our federated search framework with a lightweight search controller can achieve competitive accuracy with state-of-the-art (SOTA) methods, while reducing inference and training energy consumption by up to 3.57× and 1.82×, respectively.\",\"PeriodicalId\":270592,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"volume\":\"9 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3508352.3549403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联邦学习(FL)是一种新的分布式技术,它允许我们在边缘和嵌入式设备上训练全局模型,而不需要本地数据共享。然而,由于不同类型的设备分布广泛,FL面临着严重的异构问题。异构数据和异构系统严重影响边缘FL部署的准确性和效率。在本文中,我们对异构系统和异构数据执行联合FL模型个性化,以解决异构带来的挑战。我们首先以模型推理效率为起点,在每个节点上个性化网络规模。此外,它可以用来指导高效的FL训练过程,有助于缓解离散器件的问题,提高FL的能源效率。在FL训练过程中,使用联邦搜索获得高度精确的个性化网络结构。考虑到FL在边缘设备上部署的独特特征,我们的联邦搜索框架和轻量级搜索控制器获得的个性化网络结构可以达到与最先进(SOTA)方法相媲美的精度,同时将推理和训练能耗分别降低3.57倍和1.82倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Personalized Heterogeneity-aware Federated Search Towards Better Accuracy and Energy Efficiency
Federated learning (FL), a new distributed technology, allows us to train the global model on the edge and embedded devices without local data sharing. However, due to the wide distribution of different types of devices, FL faces severe heterogeneity issues. The accuracy and efficiency of FL deployment at the edge are severely impacted by heterogeneous data and heterogeneous systems. In this paper, we perform joint FL model personalization for heterogeneous systems and heterogeneous data to address the challenges posed by heterogeneities. We begin by using model inference efficiency as a starting point to personalize network scale on each node. Furthermore, it can be used to guide the efficient FL training process, which can help to ease the problem of straggler devices and improve FL’s energy efficiency. During FL training, federated search is then used to acquire highly accurate personalized network structures. By taking into account the unique characteristics of FL deployment at edge devices, the personalized network structures obtained by our federated search framework with a lightweight search controller can achieve competitive accuracy with state-of-the-art (SOTA) methods, while reducing inference and training energy consumption by up to 3.57× and 1.82×, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1