进化网络中群落动态的检测与跟踪

Zhengzhang Chen, Kevin A. Wilson, Ye Jin, W. Hendrix, N. Samatova
{"title":"进化网络中群落动态的检测与跟踪","authors":"Zhengzhang Chen, Kevin A. Wilson, Ye Jin, W. Hendrix, N. Samatova","doi":"10.1109/ICDMW.2010.32","DOIUrl":null,"url":null,"abstract":"Community structure or clustering is ubiquitous in many evolutionary networks including social networks, biological networks and financial market networks. Detecting and tracking community deviations in evolutionary networks can uncover important and interesting behaviors that are latent if we ignore the dynamic information. In biological networks, for example, a small variation in a gene community may indicate an event, such as gene fusion, gene fission, or gene decay. In contrast to the previous work on detecting communities in static graphs or tracking conserved communities in time-varying graphs, this paper first introduces the concept of community dynamics, and then shows that the baseline approach by enumerating all communities in each graph and comparing all pairs of communities between consecutive graphs is infeasible and impractical. We propose an efficient method for detecting and tracking community dynamics in evolutionary networks by introducing graph representatives and community representatives to avoid generating redundant communities and limit the search space. We measure the performance of the representative-based algorithm by comparison to the baseline algorithm on synthetic networks, and our experiments show that our algorithm achieves a runtime speedup of 11–46. The method has also been applied to two real-world evolutionary networks including Food Web and Enron Email. Significant and informative community dynamics have been detected in both cases.","PeriodicalId":170201,"journal":{"name":"2010 IEEE International Conference on Data Mining Workshops","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Detecting and Tracking Community Dynamics in Evolutionary Networks\",\"authors\":\"Zhengzhang Chen, Kevin A. Wilson, Ye Jin, W. Hendrix, N. Samatova\",\"doi\":\"10.1109/ICDMW.2010.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Community structure or clustering is ubiquitous in many evolutionary networks including social networks, biological networks and financial market networks. Detecting and tracking community deviations in evolutionary networks can uncover important and interesting behaviors that are latent if we ignore the dynamic information. In biological networks, for example, a small variation in a gene community may indicate an event, such as gene fusion, gene fission, or gene decay. In contrast to the previous work on detecting communities in static graphs or tracking conserved communities in time-varying graphs, this paper first introduces the concept of community dynamics, and then shows that the baseline approach by enumerating all communities in each graph and comparing all pairs of communities between consecutive graphs is infeasible and impractical. We propose an efficient method for detecting and tracking community dynamics in evolutionary networks by introducing graph representatives and community representatives to avoid generating redundant communities and limit the search space. We measure the performance of the representative-based algorithm by comparison to the baseline algorithm on synthetic networks, and our experiments show that our algorithm achieves a runtime speedup of 11–46. The method has also been applied to two real-world evolutionary networks including Food Web and Enron Email. Significant and informative community dynamics have been detected in both cases.\",\"PeriodicalId\":170201,\"journal\":{\"name\":\"2010 IEEE International Conference on Data Mining Workshops\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Data Mining Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDMW.2010.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Data Mining Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2010.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

在许多进化网络中,如社会网络、生物网络和金融市场网络,社区结构或聚类是普遍存在的。在进化网络中,如果我们忽略动态信息,检测和跟踪社区偏差可以发现潜在的重要和有趣的行为。例如,在生物网络中,基因群落中的一个小变化可能表明一个事件,如基因融合、基因裂变或基因衰变。与以往在静态图中检测群落或在时变图中跟踪保守群落的工作相比,本文首先引入了群落动态的概念,然后证明了通过枚举每个图中的所有群落并比较连续图之间的所有对的基线方法是不可行的和不切实际的。我们提出了一种有效的方法来检测和跟踪进化网络中的社区动态,通过引入图代表和社区代表来避免产生冗余的社区和限制搜索空间。通过与合成网络上的基线算法进行比较,我们测量了基于代表性的算法的性能,实验表明,我们的算法实现了11 - 46的运行时加速。该方法也被应用于两个现实世界的进化网络,包括食品网和安然电子邮件。在这两种情况下都发现了重要的和信息丰富的社区动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting and Tracking Community Dynamics in Evolutionary Networks
Community structure or clustering is ubiquitous in many evolutionary networks including social networks, biological networks and financial market networks. Detecting and tracking community deviations in evolutionary networks can uncover important and interesting behaviors that are latent if we ignore the dynamic information. In biological networks, for example, a small variation in a gene community may indicate an event, such as gene fusion, gene fission, or gene decay. In contrast to the previous work on detecting communities in static graphs or tracking conserved communities in time-varying graphs, this paper first introduces the concept of community dynamics, and then shows that the baseline approach by enumerating all communities in each graph and comparing all pairs of communities between consecutive graphs is infeasible and impractical. We propose an efficient method for detecting and tracking community dynamics in evolutionary networks by introducing graph representatives and community representatives to avoid generating redundant communities and limit the search space. We measure the performance of the representative-based algorithm by comparison to the baseline algorithm on synthetic networks, and our experiments show that our algorithm achieves a runtime speedup of 11–46. The method has also been applied to two real-world evolutionary networks including Food Web and Enron Email. Significant and informative community dynamics have been detected in both cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantum Path Integral Inspired Query Sequence Suggestion for User Search Task Simplification PTCR-Miner: Progressive Temporal Class Rule Mining for Multivariate Temporal Data Classification Bridging Folksonomies and Domain Ontologies: Getting Out Non-taxonomic Relations SIMPLE: Interactive Analytics on Patent Data Parallel EM-Clustering: Fast Convergence by Asynchronous Model Updates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1