潮地蚯蚓堆肥处理水稻株高的ANFIS预测

Abdul Rahman, Ermatita, D. Budianta, Abdiansah
{"title":"潮地蚯蚓堆肥处理水稻株高的ANFIS预测","authors":"Abdul Rahman, Ermatita, D. Budianta, Abdiansah","doi":"10.1109/ICIC54025.2021.9632972","DOIUrl":null,"url":null,"abstract":"The main problem in tidal land is high soil acidity, and the availability of nutrients in the soil is relatively low. Utilization of local resource vermicompost is used to improve soil conditions in tidal lands in order to increase crop yields. The parameter of paddy plant height has a very high correlation with paddy yields. This study aims to implement the ANFIS method to predict paddy plant height based on the treatment of vermicompost organic fertilizer. The dataset used for ANFIS training was taken directly from the observation data on the height of the paddy plant and the results of soil laboratory tests. The ANFIS process consists of 5 inputs consisting of fertilizer treatment, pH, N, P, K, and one output, namely paddy plant height. The results obtained from the training data process are that there are 486 rules and the error rate using MAPE is 3.53%, or the accuracy level of the prediction results is 96.47%.","PeriodicalId":189541,"journal":{"name":"2021 Sixth International Conference on Informatics and Computing (ICIC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Paddy Plant Height with Vermicompost Fertilizer Treatment on Tidal Land using ANFIS Method\",\"authors\":\"Abdul Rahman, Ermatita, D. Budianta, Abdiansah\",\"doi\":\"10.1109/ICIC54025.2021.9632972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main problem in tidal land is high soil acidity, and the availability of nutrients in the soil is relatively low. Utilization of local resource vermicompost is used to improve soil conditions in tidal lands in order to increase crop yields. The parameter of paddy plant height has a very high correlation with paddy yields. This study aims to implement the ANFIS method to predict paddy plant height based on the treatment of vermicompost organic fertilizer. The dataset used for ANFIS training was taken directly from the observation data on the height of the paddy plant and the results of soil laboratory tests. The ANFIS process consists of 5 inputs consisting of fertilizer treatment, pH, N, P, K, and one output, namely paddy plant height. The results obtained from the training data process are that there are 486 rules and the error rate using MAPE is 3.53%, or the accuracy level of the prediction results is 96.47%.\",\"PeriodicalId\":189541,\"journal\":{\"name\":\"2021 Sixth International Conference on Informatics and Computing (ICIC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Sixth International Conference on Informatics and Computing (ICIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC54025.2021.9632972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Sixth International Conference on Informatics and Computing (ICIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC54025.2021.9632972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

潮地的主要问题是土壤酸度高,土壤中养分的有效性相对较低。利用当地蚯蚓堆肥资源改善潮地土壤条件,提高作物产量。水稻株高参数与水稻产量有很高的相关性。本研究旨在应用基于蚯蚓堆肥有机肥处理的ANFIS方法预测水稻株高。用于ANFIS训练的数据集直接取自水稻植株高度观测数据和土壤实验室测试结果。ANFIS过程包括5个输入,包括肥料处理、pH、N、P、K和一个输出,即水稻株高。从训练数据过程中得到的结果是,共有486条规则,使用MAPE的错误率为3.53%,即预测结果的准确率为96.47%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of Paddy Plant Height with Vermicompost Fertilizer Treatment on Tidal Land using ANFIS Method
The main problem in tidal land is high soil acidity, and the availability of nutrients in the soil is relatively low. Utilization of local resource vermicompost is used to improve soil conditions in tidal lands in order to increase crop yields. The parameter of paddy plant height has a very high correlation with paddy yields. This study aims to implement the ANFIS method to predict paddy plant height based on the treatment of vermicompost organic fertilizer. The dataset used for ANFIS training was taken directly from the observation data on the height of the paddy plant and the results of soil laboratory tests. The ANFIS process consists of 5 inputs consisting of fertilizer treatment, pH, N, P, K, and one output, namely paddy plant height. The results obtained from the training data process are that there are 486 rules and the error rate using MAPE is 3.53%, or the accuracy level of the prediction results is 96.47%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of IoT adoption on Trucking Logistics in Various Industry in Indonesia Design of Blockchain Implementation for Supervision of Vaccine Distribution: Indonesia Case [ICIC 2021 Back Cover] Design and Simulation of Antipodal Vivaldi Antenna (AVA) AT 2.6 GHz For 5G Communication Optimation Classification of Chili Leaf Disease Using the Gray Level Co-occurrence Matrix (GLCM) and the Support Vector Machine (SVM) Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1