{"title":"具有高效率和大带宽同时具有高指向性和大前后比的电小天线的进展","authors":"R. Ziolkowski, M. Tang, Ning Zhu","doi":"10.1109/IWAT.2013.6518326","DOIUrl":null,"url":null,"abstract":"Non-Foster element-augmented, electrically small electric and magnetic antennas have been designed, characterized numerically, fabricated and tested. Internal non-Foster elements, which produce specifically tailored broad bandwidth inductive and capacitive devices, are introduced into the near-field resonant parasitic (NFRP) components of their narrow bandwidth counter-parts. This internal non-Foster element approach leads to nearly complete matching of the entire system to a 50 Ω source without any matching network and high radiation efficiencies over a FBW10dB bandwidth that surpasses the fundamental passive bound. By including additional parasitic elements, one can also enhance the directivity of the original passive NFRP antenna. Further augmenting such a parasitic element with a non-Foster element, one can additionally achieve a large directivity bandwidth. A 300 MHz design with ka = 0.94 is reported which simultaneously achieves high radiation efficiencies (>81.63%), high directivities (> 6.25 dB) and large front-to-back-ratios (> 26.71 dB) over a 10.0% fractional bandwidth.","PeriodicalId":247542,"journal":{"name":"2013 International Workshop on Antenna Technology (iWAT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Progress towards an electrically small antenna with high efficiency and large bandwidth simultaneously with high directivity and a large front-to-back ratio\",\"authors\":\"R. Ziolkowski, M. Tang, Ning Zhu\",\"doi\":\"10.1109/IWAT.2013.6518326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-Foster element-augmented, electrically small electric and magnetic antennas have been designed, characterized numerically, fabricated and tested. Internal non-Foster elements, which produce specifically tailored broad bandwidth inductive and capacitive devices, are introduced into the near-field resonant parasitic (NFRP) components of their narrow bandwidth counter-parts. This internal non-Foster element approach leads to nearly complete matching of the entire system to a 50 Ω source without any matching network and high radiation efficiencies over a FBW10dB bandwidth that surpasses the fundamental passive bound. By including additional parasitic elements, one can also enhance the directivity of the original passive NFRP antenna. Further augmenting such a parasitic element with a non-Foster element, one can additionally achieve a large directivity bandwidth. A 300 MHz design with ka = 0.94 is reported which simultaneously achieves high radiation efficiencies (>81.63%), high directivities (> 6.25 dB) and large front-to-back-ratios (> 26.71 dB) over a 10.0% fractional bandwidth.\",\"PeriodicalId\":247542,\"journal\":{\"name\":\"2013 International Workshop on Antenna Technology (iWAT)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Antenna Technology (iWAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAT.2013.6518326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Antenna Technology (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2013.6518326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Progress towards an electrically small antenna with high efficiency and large bandwidth simultaneously with high directivity and a large front-to-back ratio
Non-Foster element-augmented, electrically small electric and magnetic antennas have been designed, characterized numerically, fabricated and tested. Internal non-Foster elements, which produce specifically tailored broad bandwidth inductive and capacitive devices, are introduced into the near-field resonant parasitic (NFRP) components of their narrow bandwidth counter-parts. This internal non-Foster element approach leads to nearly complete matching of the entire system to a 50 Ω source without any matching network and high radiation efficiencies over a FBW10dB bandwidth that surpasses the fundamental passive bound. By including additional parasitic elements, one can also enhance the directivity of the original passive NFRP antenna. Further augmenting such a parasitic element with a non-Foster element, one can additionally achieve a large directivity bandwidth. A 300 MHz design with ka = 0.94 is reported which simultaneously achieves high radiation efficiencies (>81.63%), high directivities (> 6.25 dB) and large front-to-back-ratios (> 26.71 dB) over a 10.0% fractional bandwidth.