{"title":"具有多面体障碍物的框架空间中若干优化问题的离散化结果","authors":"Justo Puerto , Moisés Rodríguez-Madrena","doi":"10.1016/j.endm.2018.06.028","DOIUrl":null,"url":null,"abstract":"<div><p>In this work we consider the shortest path problem and the single facility Weber location problem in any real space of finite dimension where there exist different types of polyhedral obstacles or forbidden regions. These regions are polyhedral sets and the metric considered in the space is the Manhattan metric. We present a result that reduce these continuous problems into problems in a “add hoc” graph, where the original problems can be solved using elementary techniques of Graph Theory. We show that, fixed the dimension of the space, both the reduction and the resolution can be done in polynomial time.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":"68 ","pages":"Pages 161-165"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.028","citationCount":"0","resultStr":"{\"title\":\"A discretization result for some optimization problems in framework spaces with polyhedral obstacles and the Manhattan metric\",\"authors\":\"Justo Puerto , Moisés Rodríguez-Madrena\",\"doi\":\"10.1016/j.endm.2018.06.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work we consider the shortest path problem and the single facility Weber location problem in any real space of finite dimension where there exist different types of polyhedral obstacles or forbidden regions. These regions are polyhedral sets and the metric considered in the space is the Manhattan metric. We present a result that reduce these continuous problems into problems in a “add hoc” graph, where the original problems can be solved using elementary techniques of Graph Theory. We show that, fixed the dimension of the space, both the reduction and the resolution can be done in polynomial time.</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":\"68 \",\"pages\":\"Pages 161-165\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.028\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571065318301197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318301197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
A discretization result for some optimization problems in framework spaces with polyhedral obstacles and the Manhattan metric
In this work we consider the shortest path problem and the single facility Weber location problem in any real space of finite dimension where there exist different types of polyhedral obstacles or forbidden regions. These regions are polyhedral sets and the metric considered in the space is the Manhattan metric. We present a result that reduce these continuous problems into problems in a “add hoc” graph, where the original problems can be solved using elementary techniques of Graph Theory. We show that, fixed the dimension of the space, both the reduction and the resolution can be done in polynomial time.
期刊介绍:
Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.