印尼语词性标注器的词性分析。蒙古纳坎隐马尔科夫模型

Febyana Ramadhanti, Yudi Wibisono, R. Sukamto
{"title":"印尼语词性标注器的词性分析。蒙古纳坎隐马尔科夫模型","authors":"Febyana Ramadhanti, Yudi Wibisono, R. Sukamto","doi":"10.26418/JLK.V2I1.13","DOIUrl":null,"url":null,"abstract":"Part-of-speech (PoS) tagger merupakan salah satu task dalam bidang natural language processing (NLP) sebagai proses penandaan kategori kata (part-of-speech) untuk setiap kata pada teks kalimat masukan. Hidden markov model (HMM) merupakan algoritma PoS tagger berbasis probabilistik, sehingga sangat tergantung pada train corpus. Terbatasnya komponen dalam train corpus dan luasnya kata dalam bahasa Indonesia menimbulkan masalah yang disebut out-of-vocabulary (OOV) words. Penelitian ini membandingkan PoS tagger yang menggunakan HMM+AM (analisis morfologi) dan PoS tagger HMM tanpa AM, dengan menggunakan train corpus dan testing corpus yang sama. Testing corpus mengandung 30% tingkat OOV dari 6.676 token atau 740 kalimat masukan. Hasil yang diperoleh dari sistem HMM saja memiliki akurasi 97.54%, sedangkan sistem HMM dengan metode analisis morfologi memiliki akurasi tertinggi 99.14%. ","PeriodicalId":418646,"journal":{"name":"Jurnal Linguistik Komputasional (JLK)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Analisis Morfologi untuk Menangani Out-of-Vocabulary Words pada Part-of-Speech Tagger Bahasa Indonesia Menggunakan Hidden Markov Model\",\"authors\":\"Febyana Ramadhanti, Yudi Wibisono, R. Sukamto\",\"doi\":\"10.26418/JLK.V2I1.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Part-of-speech (PoS) tagger merupakan salah satu task dalam bidang natural language processing (NLP) sebagai proses penandaan kategori kata (part-of-speech) untuk setiap kata pada teks kalimat masukan. Hidden markov model (HMM) merupakan algoritma PoS tagger berbasis probabilistik, sehingga sangat tergantung pada train corpus. Terbatasnya komponen dalam train corpus dan luasnya kata dalam bahasa Indonesia menimbulkan masalah yang disebut out-of-vocabulary (OOV) words. Penelitian ini membandingkan PoS tagger yang menggunakan HMM+AM (analisis morfologi) dan PoS tagger HMM tanpa AM, dengan menggunakan train corpus dan testing corpus yang sama. Testing corpus mengandung 30% tingkat OOV dari 6.676 token atau 740 kalimat masukan. Hasil yang diperoleh dari sistem HMM saja memiliki akurasi 97.54%, sedangkan sistem HMM dengan metode analisis morfologi memiliki akurasi tertinggi 99.14%. \",\"PeriodicalId\":418646,\"journal\":{\"name\":\"Jurnal Linguistik Komputasional (JLK)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Linguistik Komputasional (JLK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26418/JLK.V2I1.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Linguistik Komputasional (JLK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/JLK.V2I1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

tagger是自然语言处理(NLP)领域的一个任务,为输入句文本中的每个单词进行标记类别。隐藏马可夫模型是一个基于概率的邮政编码算法,这在很大程度上取决于语料库。语料库中组件的有限和单词的广度导致了一种叫做vocabulary的问题。该研究比较了一个使用mm +AM(形态分析)的tagger和一个嗯不使用AM的tagger,使用相同的火车语料库和测试语料库。验证语料库包含6676个令牌或740个输入句中的30%的OOV水平。从mm系统中获得的分数仅为97% .54%,而具有形态分析方法的HMM系统的准确率最高为99.14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analisis Morfologi untuk Menangani Out-of-Vocabulary Words pada Part-of-Speech Tagger Bahasa Indonesia Menggunakan Hidden Markov Model
Part-of-speech (PoS) tagger merupakan salah satu task dalam bidang natural language processing (NLP) sebagai proses penandaan kategori kata (part-of-speech) untuk setiap kata pada teks kalimat masukan. Hidden markov model (HMM) merupakan algoritma PoS tagger berbasis probabilistik, sehingga sangat tergantung pada train corpus. Terbatasnya komponen dalam train corpus dan luasnya kata dalam bahasa Indonesia menimbulkan masalah yang disebut out-of-vocabulary (OOV) words. Penelitian ini membandingkan PoS tagger yang menggunakan HMM+AM (analisis morfologi) dan PoS tagger HMM tanpa AM, dengan menggunakan train corpus dan testing corpus yang sama. Testing corpus mengandung 30% tingkat OOV dari 6.676 token atau 740 kalimat masukan. Hasil yang diperoleh dari sistem HMM saja memiliki akurasi 97.54%, sedangkan sistem HMM dengan metode analisis morfologi memiliki akurasi tertinggi 99.14%. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Studi Ekstraksi Fitur Data Teks Rencana Pelaksanaan Pembelajaran Memanfaatkan Model Word2Vec Bagaimana Masyarakat Menyikapi Pembelajaran Tatap Muka: Analisis Komentar Masyarakat pada Media Sosial Youtube Menggunakan Algoritma Deep Learning Sekuensial dan LDA Sentiment Analysis of Stocktwits Data With Word Vector and Gated Recurrent Unit Indonesian Question Answering System for Factoid Questions using Face Beauty Products Knowledge Graph Sentiment Analysis Terhadap Tweet Bernada Sarkasme Berbahasa Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1