查尔斯:无线网络上的信道质量自适应空中联合学习

Jiayu Mao, Haibo Yang, Pei-Chen Qiu, Jia Liu, A. Yener
{"title":"查尔斯:无线网络上的信道质量自适应空中联合学习","authors":"Jiayu Mao, Haibo Yang, Pei-Chen Qiu, Jia Liu, A. Yener","doi":"10.48550/arXiv.2205.09330","DOIUrl":null,"url":null,"abstract":"Over-the-air federated learning (OTA-FL) has emerged as an efficient mechanism that exploits the superposition property of the wireless medium and performs model aggregation for federated learning in the air. OTA-FL is naturally sensitive to wireless channel fading, which could significantly diminish its learning accuracy. To address this challenge, in this paper, we propose an OTA-FL algorithm called CHARLES (channel- quality-aware over-the-air local estimating and scaling). Our CHARLES algorithm performs channel state information (CSI) estimation and adaptive scaling to mitigate the impacts of wireless channel fading. We establish the theoretical convergence rate performance of CHARLES and analyze the impacts of CSI error on the convergence of CHARLES. We show that the adaptive channel inversion scaling scheme in CHARLES is robust under imperfect CSI scenarios. We also demonstrate through numerical results that CHARLES outperforms existing OTA-FL algorithms with heterogeneous data under imperfect CSI.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"CHARLES: Channel-Quality-Adaptive Over-the-Air Federated Learning over Wireless Networks\",\"authors\":\"Jiayu Mao, Haibo Yang, Pei-Chen Qiu, Jia Liu, A. Yener\",\"doi\":\"10.48550/arXiv.2205.09330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over-the-air federated learning (OTA-FL) has emerged as an efficient mechanism that exploits the superposition property of the wireless medium and performs model aggregation for federated learning in the air. OTA-FL is naturally sensitive to wireless channel fading, which could significantly diminish its learning accuracy. To address this challenge, in this paper, we propose an OTA-FL algorithm called CHARLES (channel- quality-aware over-the-air local estimating and scaling). Our CHARLES algorithm performs channel state information (CSI) estimation and adaptive scaling to mitigate the impacts of wireless channel fading. We establish the theoretical convergence rate performance of CHARLES and analyze the impacts of CSI error on the convergence of CHARLES. We show that the adaptive channel inversion scaling scheme in CHARLES is robust under imperfect CSI scenarios. We also demonstrate through numerical results that CHARLES outperforms existing OTA-FL algorithms with heterogeneous data under imperfect CSI.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.09330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.09330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

空中联邦学习(OTA-FL)是一种利用无线介质的叠加特性,对空中联邦学习进行模型聚合的有效机制。OTA-FL天生对无线信道衰落很敏感,这会大大降低其学习精度。为了解决这一挑战,在本文中,我们提出了一种称为CHARLES(信道质量感知的空中本地估计和缩放)的OTA-FL算法。我们的CHARLES算法通过信道状态信息(CSI)估计和自适应缩放来减轻无线信道衰落的影响。建立了CHARLES的理论收敛速率性能,并分析了CSI误差对CHARLES收敛性能的影响。我们证明了CHARLES中的自适应信道反转标度方案在不完美CSI场景下具有鲁棒性。我们还通过数值结果证明了CHARLES在不完全CSI下优于现有的异构数据OTA-FL算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CHARLES: Channel-Quality-Adaptive Over-the-Air Federated Learning over Wireless Networks
Over-the-air federated learning (OTA-FL) has emerged as an efficient mechanism that exploits the superposition property of the wireless medium and performs model aggregation for federated learning in the air. OTA-FL is naturally sensitive to wireless channel fading, which could significantly diminish its learning accuracy. To address this challenge, in this paper, we propose an OTA-FL algorithm called CHARLES (channel- quality-aware over-the-air local estimating and scaling). Our CHARLES algorithm performs channel state information (CSI) estimation and adaptive scaling to mitigate the impacts of wireless channel fading. We establish the theoretical convergence rate performance of CHARLES and analyze the impacts of CSI error on the convergence of CHARLES. We show that the adaptive channel inversion scaling scheme in CHARLES is robust under imperfect CSI scenarios. We also demonstrate through numerical results that CHARLES outperforms existing OTA-FL algorithms with heterogeneous data under imperfect CSI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1