气隙电压-时间特性与绝缘协调一百年研究综述

D. Kind, M. Kurrat, T. Kopp
{"title":"气隙电压-时间特性与绝缘协调一百年研究综述","authors":"D. Kind, M. Kurrat, T. Kopp","doi":"10.1109/ICLP.2016.7791358","DOIUrl":null,"url":null,"abstract":"With the first application of HV-power lines at the early 20th century the protection of electric components against lightning strokes became a crucial problem. Albeit the overhead insulators were designed to withstand high ac-voltages above the operating level, they failed under stress of high impulse voltages with unknown shape. The need to generate short-time HV-impulses was solved in the 1920th by the invention of the “Marx-Generator”. At least it was observed that the flashover voltage of an insulator is higher for shorter than for longer pulses. During the following decades HV-power networks expanded worldwide rapidly and with it grew the need of HV-impulse tests in laboratories. Progress in short time measurement techniques allowed to reproduce impulses of defined shape and amplitude. In order to establish compatibility of discharge tests in the Megavolt-range, standard pulse shapes were internationally agreed upon. Of special interest for an effective coordination of various insulation structures became data of spark-over values of air gaps with very short time lags. However, a great number of measurements did not lead to satisfying results for non-standard test-voltages. Attempts to derive formulae for good results were neither easy to use nor reliable. Finally, an approach starting from the first principle of discharge in an air gap assuming the speed of leader growth being proportional to the instant voltage above the withstand value led to a simple and generally applicable criterion. Further development of physical models for the leader propagation process leads to self-reliant calculation methods, which are simply coupled to average field calculations.","PeriodicalId":373744,"journal":{"name":"2016 33rd International Conference on Lightning Protection (ICLP)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Voltage-time characteristics of air gaps and insulation coordination — Survey of 100 years research\",\"authors\":\"D. Kind, M. Kurrat, T. Kopp\",\"doi\":\"10.1109/ICLP.2016.7791358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the first application of HV-power lines at the early 20th century the protection of electric components against lightning strokes became a crucial problem. Albeit the overhead insulators were designed to withstand high ac-voltages above the operating level, they failed under stress of high impulse voltages with unknown shape. The need to generate short-time HV-impulses was solved in the 1920th by the invention of the “Marx-Generator”. At least it was observed that the flashover voltage of an insulator is higher for shorter than for longer pulses. During the following decades HV-power networks expanded worldwide rapidly and with it grew the need of HV-impulse tests in laboratories. Progress in short time measurement techniques allowed to reproduce impulses of defined shape and amplitude. In order to establish compatibility of discharge tests in the Megavolt-range, standard pulse shapes were internationally agreed upon. Of special interest for an effective coordination of various insulation structures became data of spark-over values of air gaps with very short time lags. However, a great number of measurements did not lead to satisfying results for non-standard test-voltages. Attempts to derive formulae for good results were neither easy to use nor reliable. Finally, an approach starting from the first principle of discharge in an air gap assuming the speed of leader growth being proportional to the instant voltage above the withstand value led to a simple and generally applicable criterion. Further development of physical models for the leader propagation process leads to self-reliant calculation methods, which are simply coupled to average field calculations.\",\"PeriodicalId\":373744,\"journal\":{\"name\":\"2016 33rd International Conference on Lightning Protection (ICLP)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 33rd International Conference on Lightning Protection (ICLP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICLP.2016.7791358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 33rd International Conference on Lightning Protection (ICLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICLP.2016.7791358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

随着20世纪初高压电力线的首次应用,保护电气元件免受雷击成为一个关键问题。尽管架空绝缘子的设计是为了承受高于工作水平的高交流电压,但它们在形状未知的高脉冲电压的压力下失效。20世纪20年代,“马克思发电机”的发明解决了产生短时高压脉冲的需要。至少观察到,短脉冲绝缘子的闪络电压高于长脉冲绝缘子的闪络电压。在接下来的几十年里,高压电网在全球范围内迅速扩张,对实验室高压脉冲测试的需求也随之增长。在短时间测量技术上的进步,使再现具有确定形状和振幅的脉冲成为可能。为了建立兆伏范围内放电试验的兼容性,国际上商定了标准脉冲形状。对各种绝缘结构的有效协调特别感兴趣的是具有很短时间滞后的气隙火花值数据。然而,对于非标准测试电压,大量的测量并没有得到令人满意的结果。试图推导出良好结果的公式既不容易使用,也不可靠。最后,从气隙放电的第一原理出发,假设引线生长的速度与高于耐压值的瞬时电压成正比,得出了一个简单而普遍适用的准则。引线传播过程的物理模型的进一步发展导致了自我依赖的计算方法,它简单地与平均场计算相耦合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Voltage-time characteristics of air gaps and insulation coordination — Survey of 100 years research
With the first application of HV-power lines at the early 20th century the protection of electric components against lightning strokes became a crucial problem. Albeit the overhead insulators were designed to withstand high ac-voltages above the operating level, they failed under stress of high impulse voltages with unknown shape. The need to generate short-time HV-impulses was solved in the 1920th by the invention of the “Marx-Generator”. At least it was observed that the flashover voltage of an insulator is higher for shorter than for longer pulses. During the following decades HV-power networks expanded worldwide rapidly and with it grew the need of HV-impulse tests in laboratories. Progress in short time measurement techniques allowed to reproduce impulses of defined shape and amplitude. In order to establish compatibility of discharge tests in the Megavolt-range, standard pulse shapes were internationally agreed upon. Of special interest for an effective coordination of various insulation structures became data of spark-over values of air gaps with very short time lags. However, a great number of measurements did not lead to satisfying results for non-standard test-voltages. Attempts to derive formulae for good results were neither easy to use nor reliable. Finally, an approach starting from the first principle of discharge in an air gap assuming the speed of leader growth being proportional to the instant voltage above the withstand value led to a simple and generally applicable criterion. Further development of physical models for the leader propagation process leads to self-reliant calculation methods, which are simply coupled to average field calculations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental and theoretical evaluation of aluminium deflection due to lightning strikes Degradation characteristics on MOV of surge arrester used for 6.6kV power distribution line Lightning protection of a temporary structure in open area Lightning performance of EHV and UHV overhead transmission Lines in China southern power grid Research of influence pattern of lightning current on impulse characteristic of ground device for pole and tower
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1