{"title":"指令模式下CEBG结构中不同缺陷形态的分析","authors":"A. Edalati, T. Denidni, H. Boutayeb","doi":"10.1109/APS.2007.4395461","DOIUrl":null,"url":null,"abstract":"Electromagnetic bang gap (EBG) materials are periodic structures characterized by forbidden propagation of electromagnetic waves in their band-gap and by the ability to open localized modes inside the band-gap by introducing defects. Cylindrical electromagnetic band gap (CEBG) structures are radially and circularly periodic, and they present pass-band and stop-band to cylindrical electromagnetic waves. By applying a horn-shaped defect in these structures, it has been shown that a re-configurable directive pattern can be obtained. In (P. Ratasjack et al., 2004), experimental results for a reconfigurable CEBG-based antenna have been presented, whereas in (H. Boutayeb et al., 2006), an analysis of the transmission coefficient of CEBG structures and experimental results for a CEBG directive antenna have been proposed. In (H. Boutayeb et al., 2006), a new defect configuration has been proposed for reducing the power supply, but this solution leads to a narrower band. In this paper, new defect configurations are analyzed in order to reduce the number of active elements and the required power supply in CEBG-based agile antennas. The solution with the widest bandwidth is indicated.","PeriodicalId":117975,"journal":{"name":"2007 IEEE Antennas and Propagation Society International Symposium","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of different defect configurations in CEBG structures for directive patterns\",\"authors\":\"A. Edalati, T. Denidni, H. Boutayeb\",\"doi\":\"10.1109/APS.2007.4395461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electromagnetic bang gap (EBG) materials are periodic structures characterized by forbidden propagation of electromagnetic waves in their band-gap and by the ability to open localized modes inside the band-gap by introducing defects. Cylindrical electromagnetic band gap (CEBG) structures are radially and circularly periodic, and they present pass-band and stop-band to cylindrical electromagnetic waves. By applying a horn-shaped defect in these structures, it has been shown that a re-configurable directive pattern can be obtained. In (P. Ratasjack et al., 2004), experimental results for a reconfigurable CEBG-based antenna have been presented, whereas in (H. Boutayeb et al., 2006), an analysis of the transmission coefficient of CEBG structures and experimental results for a CEBG directive antenna have been proposed. In (H. Boutayeb et al., 2006), a new defect configuration has been proposed for reducing the power supply, but this solution leads to a narrower band. In this paper, new defect configurations are analyzed in order to reduce the number of active elements and the required power supply in CEBG-based agile antennas. The solution with the widest bandwidth is indicated.\",\"PeriodicalId\":117975,\"journal\":{\"name\":\"2007 IEEE Antennas and Propagation Society International Symposium\",\"volume\":\"358 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Antennas and Propagation Society International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2007.4395461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2007.4395461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
电磁弹隙(EBG)材料是一种周期性结构,其特点是电磁波在其带隙中被禁止传播,并且能够通过引入缺陷在带隙内打开局域模式。圆柱形电磁带隙结构具有径向周期性和圆周期性,对圆柱形电磁波具有通带和阻带特性。通过在这些结构中加入角状缺陷,可以获得可重构的指令模式。在(P. Ratasjack等人,2004)中,提出了基于CEBG的可重构天线的实验结果,而在(H. Boutayeb等人,2006)中,提出了CEBG结构的传输系数分析和CEBG指令天线的实验结果。在(H. Boutayeb et al., 2006)中,提出了一种新的缺陷配置来减少功率供应,但这种解决方案导致更窄的频带。为了减少基于cebg的敏捷天线的有源元件数量和所需的电源,本文分析了新的缺陷配置。给出了带宽最宽的解。
Analysis of different defect configurations in CEBG structures for directive patterns
Electromagnetic bang gap (EBG) materials are periodic structures characterized by forbidden propagation of electromagnetic waves in their band-gap and by the ability to open localized modes inside the band-gap by introducing defects. Cylindrical electromagnetic band gap (CEBG) structures are radially and circularly periodic, and they present pass-band and stop-band to cylindrical electromagnetic waves. By applying a horn-shaped defect in these structures, it has been shown that a re-configurable directive pattern can be obtained. In (P. Ratasjack et al., 2004), experimental results for a reconfigurable CEBG-based antenna have been presented, whereas in (H. Boutayeb et al., 2006), an analysis of the transmission coefficient of CEBG structures and experimental results for a CEBG directive antenna have been proposed. In (H. Boutayeb et al., 2006), a new defect configuration has been proposed for reducing the power supply, but this solution leads to a narrower band. In this paper, new defect configurations are analyzed in order to reduce the number of active elements and the required power supply in CEBG-based agile antennas. The solution with the widest bandwidth is indicated.