S. Bhattacharjee, Monojit Dey, Aniket Chakarabarty, R. Mitchell, M. Ren
{"title":"零价优势辉绿石:端元公式计算及其成岩意义","authors":"S. Bhattacharjee, Monojit Dey, Aniket Chakarabarty, R. Mitchell, M. Ren","doi":"10.3749/canmin.2100058","DOIUrl":null,"url":null,"abstract":"\n The existing classification of pyrochlore group minerals is essentially based on the dominant valence rule. However, coupled heterovalent-homovalent substitutions at the A-, B-, and Y-sites commonly result in charge-imbalanced endmember formulae. The application of the site total charge (STC) method permits the determination of a charge-balanced endmember. Species names are assigned by using the dominant constituent rule. According to the current IMA nomenclature scheme, some previously established pyrochlore species, such as kalipyrochlore, strontiopyrochlore, bariopyrochlore, plumbopyrochlore, ceriopyrochlore, yttropyrochlore, bismutopyrochlore, and uranpyrochlore, are all grouped as zero-valent-dominant pyrochlores, resulting in the loss of petrogenetic information. In this work, the zero-valent-dominant pyrochlores of the pyrochlore group (sensu stricto) are classified into R+-, R2+-, R3+-, and R4+-pyrochlores where the respective cations (R) are the dominant valencies at the A- and Y-sites (for R+-pyrochlores) after vacancies (□) and H2O. The endmember charge arrangements are determined by the STC method to obtain charge-balanced endmember formulae for all possible zero-valent pyrochlore species. It is recommended that suitable adjectival modifiers be used along with the species name to emphasize the abundance of certain cations, which may or may not be reflected in the endmember formula. This approach would facilitate the usage of pyrochlore group minerals for all practical petrological and exploration purposes. It is considered that pyrochlores with significant A-site vacancies do not necessarily reflect formation in a supergene environment, as such pyrochlores can also form in hydrothermal parageneses.","PeriodicalId":134244,"journal":{"name":"The Canadian Mineralogist","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Zero-Valent-Dominant Pyrochlores: Endmember Formula Calculation and Petrogenetic Significance\",\"authors\":\"S. Bhattacharjee, Monojit Dey, Aniket Chakarabarty, R. Mitchell, M. Ren\",\"doi\":\"10.3749/canmin.2100058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The existing classification of pyrochlore group minerals is essentially based on the dominant valence rule. However, coupled heterovalent-homovalent substitutions at the A-, B-, and Y-sites commonly result in charge-imbalanced endmember formulae. The application of the site total charge (STC) method permits the determination of a charge-balanced endmember. Species names are assigned by using the dominant constituent rule. According to the current IMA nomenclature scheme, some previously established pyrochlore species, such as kalipyrochlore, strontiopyrochlore, bariopyrochlore, plumbopyrochlore, ceriopyrochlore, yttropyrochlore, bismutopyrochlore, and uranpyrochlore, are all grouped as zero-valent-dominant pyrochlores, resulting in the loss of petrogenetic information. In this work, the zero-valent-dominant pyrochlores of the pyrochlore group (sensu stricto) are classified into R+-, R2+-, R3+-, and R4+-pyrochlores where the respective cations (R) are the dominant valencies at the A- and Y-sites (for R+-pyrochlores) after vacancies (□) and H2O. The endmember charge arrangements are determined by the STC method to obtain charge-balanced endmember formulae for all possible zero-valent pyrochlore species. It is recommended that suitable adjectival modifiers be used along with the species name to emphasize the abundance of certain cations, which may or may not be reflected in the endmember formula. This approach would facilitate the usage of pyrochlore group minerals for all practical petrological and exploration purposes. It is considered that pyrochlores with significant A-site vacancies do not necessarily reflect formation in a supergene environment, as such pyrochlores can also form in hydrothermal parageneses.\",\"PeriodicalId\":134244,\"journal\":{\"name\":\"The Canadian Mineralogist\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Canadian Mineralogist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3749/canmin.2100058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Mineralogist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3749/canmin.2100058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zero-Valent-Dominant Pyrochlores: Endmember Formula Calculation and Petrogenetic Significance
The existing classification of pyrochlore group minerals is essentially based on the dominant valence rule. However, coupled heterovalent-homovalent substitutions at the A-, B-, and Y-sites commonly result in charge-imbalanced endmember formulae. The application of the site total charge (STC) method permits the determination of a charge-balanced endmember. Species names are assigned by using the dominant constituent rule. According to the current IMA nomenclature scheme, some previously established pyrochlore species, such as kalipyrochlore, strontiopyrochlore, bariopyrochlore, plumbopyrochlore, ceriopyrochlore, yttropyrochlore, bismutopyrochlore, and uranpyrochlore, are all grouped as zero-valent-dominant pyrochlores, resulting in the loss of petrogenetic information. In this work, the zero-valent-dominant pyrochlores of the pyrochlore group (sensu stricto) are classified into R+-, R2+-, R3+-, and R4+-pyrochlores where the respective cations (R) are the dominant valencies at the A- and Y-sites (for R+-pyrochlores) after vacancies (□) and H2O. The endmember charge arrangements are determined by the STC method to obtain charge-balanced endmember formulae for all possible zero-valent pyrochlore species. It is recommended that suitable adjectival modifiers be used along with the species name to emphasize the abundance of certain cations, which may or may not be reflected in the endmember formula. This approach would facilitate the usage of pyrochlore group minerals for all practical petrological and exploration purposes. It is considered that pyrochlores with significant A-site vacancies do not necessarily reflect formation in a supergene environment, as such pyrochlores can also form in hydrothermal parageneses.