{"title":"迈向使用FaaS结构的联邦学习","authors":"Mohak Chadha, Anshul Jindal, M. Gerndt","doi":"10.1145/3429880.3430100","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) enables resource-constrained edge devices to learn a shared Machine Learning (ML) or Deep Neural Network (DNN) model, while keeping the training data local and providing privacy, security, and economic benefits. However, building a shared model for heterogeneous devices such as resource-constrained edge and cloud makes the efficient management of FL-clients challenging. Furthermore, with the rapid growth of FL-clients, the scaling of FL training process is also difficult. In this paper, we propose a possible solution to these challenges: federated learning over a combination of connected Function-as-a-Service platforms, i.e., FaaS fabric offering a seamless way of extending FL to heterogeneous devices. Towards this, we present FedKeeper, a tool for efficiently managing FL over FaaS fabric. We demonstrate the functionality of FedKeeper by using three FaaS platforms through an image classification task with a varying number of devices/clients, different stochastic optimizers, and local computations (local epochs).","PeriodicalId":224350,"journal":{"name":"Proceedings of the 2020 Sixth International Workshop on Serverless Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Towards Federated Learning using FaaS Fabric\",\"authors\":\"Mohak Chadha, Anshul Jindal, M. Gerndt\",\"doi\":\"10.1145/3429880.3430100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) enables resource-constrained edge devices to learn a shared Machine Learning (ML) or Deep Neural Network (DNN) model, while keeping the training data local and providing privacy, security, and economic benefits. However, building a shared model for heterogeneous devices such as resource-constrained edge and cloud makes the efficient management of FL-clients challenging. Furthermore, with the rapid growth of FL-clients, the scaling of FL training process is also difficult. In this paper, we propose a possible solution to these challenges: federated learning over a combination of connected Function-as-a-Service platforms, i.e., FaaS fabric offering a seamless way of extending FL to heterogeneous devices. Towards this, we present FedKeeper, a tool for efficiently managing FL over FaaS fabric. We demonstrate the functionality of FedKeeper by using three FaaS platforms through an image classification task with a varying number of devices/clients, different stochastic optimizers, and local computations (local epochs).\",\"PeriodicalId\":224350,\"journal\":{\"name\":\"Proceedings of the 2020 Sixth International Workshop on Serverless Computing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 Sixth International Workshop on Serverless Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3429880.3430100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 Sixth International Workshop on Serverless Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429880.3430100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Federated learning (FL) enables resource-constrained edge devices to learn a shared Machine Learning (ML) or Deep Neural Network (DNN) model, while keeping the training data local and providing privacy, security, and economic benefits. However, building a shared model for heterogeneous devices such as resource-constrained edge and cloud makes the efficient management of FL-clients challenging. Furthermore, with the rapid growth of FL-clients, the scaling of FL training process is also difficult. In this paper, we propose a possible solution to these challenges: federated learning over a combination of connected Function-as-a-Service platforms, i.e., FaaS fabric offering a seamless way of extending FL to heterogeneous devices. Towards this, we present FedKeeper, a tool for efficiently managing FL over FaaS fabric. We demonstrate the functionality of FedKeeper by using three FaaS platforms through an image classification task with a varying number of devices/clients, different stochastic optimizers, and local computations (local epochs).