基于改进YOLOv5的目标识别技术研究

Lu-lu Fang, Yang Zhang, Tao Jing, Hai Hu
{"title":"基于改进YOLOv5的目标识别技术研究","authors":"Lu-lu Fang, Yang Zhang, Tao Jing, Hai Hu","doi":"10.1117/12.3000843","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of low detection accuracy in traditional UAV target recognition, an improved YOLOv5 target recognition method is proposed. The loss function of YOLOv5 is improved, and the CIoU loss function is used instead of the GIoU loss function used by YOLOv5 to optimize the training model. The accuracy of the algorithm is improved, and a more accurate identification of the target is realized. The experimental results show that the mAP value of the model trained on the aviation dataset NWPU VHR-10 by the improved YOLOv5 algorithm reaches 93.33%, which is 4% higher than the original YOLOv5 algorithm.","PeriodicalId":210802,"journal":{"name":"International Conference on Image Processing and Intelligent Control","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on target recognition technology based on improved YOLOv5\",\"authors\":\"Lu-lu Fang, Yang Zhang, Tao Jing, Hai Hu\",\"doi\":\"10.1117/12.3000843\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of low detection accuracy in traditional UAV target recognition, an improved YOLOv5 target recognition method is proposed. The loss function of YOLOv5 is improved, and the CIoU loss function is used instead of the GIoU loss function used by YOLOv5 to optimize the training model. The accuracy of the algorithm is improved, and a more accurate identification of the target is realized. The experimental results show that the mAP value of the model trained on the aviation dataset NWPU VHR-10 by the improved YOLOv5 algorithm reaches 93.33%, which is 4% higher than the original YOLOv5 algorithm.\",\"PeriodicalId\":210802,\"journal\":{\"name\":\"International Conference on Image Processing and Intelligent Control\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Image Processing and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3000843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Image Processing and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3000843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对传统无人机目标识别检测精度低的问题,提出了一种改进的YOLOv5目标识别方法。对YOLOv5的损失函数进行了改进,使用CIoU损失函数代替YOLOv5使用的GIoU损失函数来优化训练模型。提高了算法的精度,实现了更准确的目标识别。实验结果表明,改进的YOLOv5算法在航空数据集NWPU VHR-10上训练的模型mAP值达到93.33%,比原YOLOv5算法提高了4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on target recognition technology based on improved YOLOv5
Aiming at the problem of low detection accuracy in traditional UAV target recognition, an improved YOLOv5 target recognition method is proposed. The loss function of YOLOv5 is improved, and the CIoU loss function is used instead of the GIoU loss function used by YOLOv5 to optimize the training model. The accuracy of the algorithm is improved, and a more accurate identification of the target is realized. The experimental results show that the mAP value of the model trained on the aviation dataset NWPU VHR-10 by the improved YOLOv5 algorithm reaches 93.33%, which is 4% higher than the original YOLOv5 algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of design factors of an interactive interface of intangible cultural heritage APP based on user experience Video description method with fusion of instance-aware temporal features A control system for fine farming of apple trees Chinese image description evaluation method based on target domain semantic constraints YOLO-H: a lightweight object detection framework for helmet wearing detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1