{"title":"人工智能在气候中性文化遗产中的应用","authors":"Tolga Bakirman, Bahadır Kulavuz, B. Bayram","doi":"10.14358/pers.22-00118r2","DOIUrl":null,"url":null,"abstract":"Cultural heritage (CH) aims to create new strategies and policies for adapting to climate change. Additionally, the goals of sustainable development aim to protect, monitor, and preserve the world's CH and to take urgent action to combat climate change and its effects. Therefore, developing\n efficient and accurate techniques toward making CH climate neutral and more resilient is of vital importance. This study aims to provide a holistic solution to monitor and protect CHfrom climate change, natural hazards, and anthropogenic effects in a sustainable way. In our study, the efficiency\n of deep learning using low-cost unmanned aerial vehicles and camera images for the documentation and monitoring of CHis investigated. The dense extreme inception network for edge detection and richer convolu- tional feature architectures have been used for the first time in the literature\n to extract contours and cracks from CHstructures. As a result of the study, F1 scores of 61.38% and 61.50% for both architectures, respectively, were obtained. The results show that the proposed solution can aid in monitoring the protection of CHfrom climate change, natural disasters, and\n anthropogenic effects.","PeriodicalId":211256,"journal":{"name":"Photogrammetric Engineering & Remote Sensing","volume":"11 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Use of Artificial Intelligence Toward Climate-neutral Cultural Heritage\",\"authors\":\"Tolga Bakirman, Bahadır Kulavuz, B. Bayram\",\"doi\":\"10.14358/pers.22-00118r2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cultural heritage (CH) aims to create new strategies and policies for adapting to climate change. Additionally, the goals of sustainable development aim to protect, monitor, and preserve the world's CH and to take urgent action to combat climate change and its effects. Therefore, developing\\n efficient and accurate techniques toward making CH climate neutral and more resilient is of vital importance. This study aims to provide a holistic solution to monitor and protect CHfrom climate change, natural hazards, and anthropogenic effects in a sustainable way. In our study, the efficiency\\n of deep learning using low-cost unmanned aerial vehicles and camera images for the documentation and monitoring of CHis investigated. The dense extreme inception network for edge detection and richer convolu- tional feature architectures have been used for the first time in the literature\\n to extract contours and cracks from CHstructures. As a result of the study, F1 scores of 61.38% and 61.50% for both architectures, respectively, were obtained. The results show that the proposed solution can aid in monitoring the protection of CHfrom climate change, natural disasters, and\\n anthropogenic effects.\",\"PeriodicalId\":211256,\"journal\":{\"name\":\"Photogrammetric Engineering & Remote Sensing\",\"volume\":\"11 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photogrammetric Engineering & Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14358/pers.22-00118r2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photogrammetric Engineering & Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14358/pers.22-00118r2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Use of Artificial Intelligence Toward Climate-neutral Cultural Heritage
Cultural heritage (CH) aims to create new strategies and policies for adapting to climate change. Additionally, the goals of sustainable development aim to protect, monitor, and preserve the world's CH and to take urgent action to combat climate change and its effects. Therefore, developing
efficient and accurate techniques toward making CH climate neutral and more resilient is of vital importance. This study aims to provide a holistic solution to monitor and protect CHfrom climate change, natural hazards, and anthropogenic effects in a sustainable way. In our study, the efficiency
of deep learning using low-cost unmanned aerial vehicles and camera images for the documentation and monitoring of CHis investigated. The dense extreme inception network for edge detection and richer convolu- tional feature architectures have been used for the first time in the literature
to extract contours and cracks from CHstructures. As a result of the study, F1 scores of 61.38% and 61.50% for both architectures, respectively, were obtained. The results show that the proposed solution can aid in monitoring the protection of CHfrom climate change, natural disasters, and
anthropogenic effects.