H. Musleh, S. Shaat, N. Dahoudi, J. Asad, Samy Mansy
{"title":"基于TiO2薄膜的连续离子层吸附反应(SILAR)技术制备CdS量子点敏化太阳能电池及表征","authors":"H. Musleh, S. Shaat, N. Dahoudi, J. Asad, Samy Mansy","doi":"10.1109/ieCRES57315.2023.10209431","DOIUrl":null,"url":null,"abstract":"The most affordable alternatives to traditional silicon solar cells are quantum dot-sensitized solar cells. II-VI semiconductors compound have been widely used as Quantum Dot absorbers. Thin film of TiO2 blocking layer was deposited onto FTO layer to prevent recombination of charges to achieve higher efficiency. A TiO2 nanostructure-based cadmium sulfide quantum dot sensitive solar cell has been created. TiO2 films degrade utilizing the SILAR method (Successive Ionic Layer Adsorption and Reaction). Enhancement the electrical conduction and reducing the recombination of charges between layer is a very strong tool for the characterization of photovoltaic devices. TiO2 films were immersed into 0. 05M KC1 solution at 70 0C for different time. Efficiency was experimentally tested using current-voltage (I-V) in order to extract fabricated device properties. Solar cells with cadmium sulfide quantum dots are demonstrating a performance of 1.5-1.82%. Under AM1.5 illumination, a short circuit current density of 5.922 mA/c$\\mathrm{m}^{2}$ and an open circuit voltage of around 0.613 V were attained.","PeriodicalId":431920,"journal":{"name":"2023 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and Characterization of CdS Quantum Dot-Sensitized Solar Cell Based on TiO2 Film by Successive Ionic Layer Adsorption and Reaction (SILAR) Technique\",\"authors\":\"H. Musleh, S. Shaat, N. Dahoudi, J. Asad, Samy Mansy\",\"doi\":\"10.1109/ieCRES57315.2023.10209431\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most affordable alternatives to traditional silicon solar cells are quantum dot-sensitized solar cells. II-VI semiconductors compound have been widely used as Quantum Dot absorbers. Thin film of TiO2 blocking layer was deposited onto FTO layer to prevent recombination of charges to achieve higher efficiency. A TiO2 nanostructure-based cadmium sulfide quantum dot sensitive solar cell has been created. TiO2 films degrade utilizing the SILAR method (Successive Ionic Layer Adsorption and Reaction). Enhancement the electrical conduction and reducing the recombination of charges between layer is a very strong tool for the characterization of photovoltaic devices. TiO2 films were immersed into 0. 05M KC1 solution at 70 0C for different time. Efficiency was experimentally tested using current-voltage (I-V) in order to extract fabricated device properties. Solar cells with cadmium sulfide quantum dots are demonstrating a performance of 1.5-1.82%. Under AM1.5 illumination, a short circuit current density of 5.922 mA/c$\\\\mathrm{m}^{2}$ and an open circuit voltage of around 0.613 V were attained.\",\"PeriodicalId\":431920,\"journal\":{\"name\":\"2023 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ieCRES57315.2023.10209431\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 8th International Engineering Conference on Renewable Energy & Sustainability (ieCRES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ieCRES57315.2023.10209431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fabrication and Characterization of CdS Quantum Dot-Sensitized Solar Cell Based on TiO2 Film by Successive Ionic Layer Adsorption and Reaction (SILAR) Technique
The most affordable alternatives to traditional silicon solar cells are quantum dot-sensitized solar cells. II-VI semiconductors compound have been widely used as Quantum Dot absorbers. Thin film of TiO2 blocking layer was deposited onto FTO layer to prevent recombination of charges to achieve higher efficiency. A TiO2 nanostructure-based cadmium sulfide quantum dot sensitive solar cell has been created. TiO2 films degrade utilizing the SILAR method (Successive Ionic Layer Adsorption and Reaction). Enhancement the electrical conduction and reducing the recombination of charges between layer is a very strong tool for the characterization of photovoltaic devices. TiO2 films were immersed into 0. 05M KC1 solution at 70 0C for different time. Efficiency was experimentally tested using current-voltage (I-V) in order to extract fabricated device properties. Solar cells with cadmium sulfide quantum dots are demonstrating a performance of 1.5-1.82%. Under AM1.5 illumination, a short circuit current density of 5.922 mA/c$\mathrm{m}^{2}$ and an open circuit voltage of around 0.613 V were attained.