基于多核准则的低分辨率人脸图像识别

Chuan-Xian Ren, D. Dai, Hong Yan
{"title":"基于多核准则的低分辨率人脸图像识别","authors":"Chuan-Xian Ren, D. Dai, Hong Yan","doi":"10.1109/ACPR.2011.6166709","DOIUrl":null,"url":null,"abstract":"Practical face recognition systems are sometimes confronted with low-resolution (LR) images. Most existing feature extraction algorithms aim to preserve relational structure among objects of the input space in a linear embedding space. However, it has been a consensus that such complex visual learning tasks will be well be solved by adopting multiple descriptors to more precisely characterize the data for improving performance. In this paper, we addresses the problem of matching LR and high-resolution images that are difficult for conventional methods in practice due to the lack of an efficient similarity measure, and a multiple kernel criterion (MKC) is proposed for LR face recognition without any super-resolution (SR) preprocessing. Different image descriptors including RsL2, LBP, Gradientface and IMED are considered as the multiple kernel generators and the Gaussian function is exploited as the distance induced kernel. MKC solves this problem by minimizing the inconsistency between the similarities captured by the multiple kernels, and the nonlinear objective function can be alternatively minimized by a constrained eigenvalue decomposition. Experiments on benchmark databases show that our MKC method indeed improves the recognition performance.","PeriodicalId":287232,"journal":{"name":"The First Asian Conference on Pattern Recognition","volume":"398 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low resolution facial image recognition via multiple kernel criterion\",\"authors\":\"Chuan-Xian Ren, D. Dai, Hong Yan\",\"doi\":\"10.1109/ACPR.2011.6166709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Practical face recognition systems are sometimes confronted with low-resolution (LR) images. Most existing feature extraction algorithms aim to preserve relational structure among objects of the input space in a linear embedding space. However, it has been a consensus that such complex visual learning tasks will be well be solved by adopting multiple descriptors to more precisely characterize the data for improving performance. In this paper, we addresses the problem of matching LR and high-resolution images that are difficult for conventional methods in practice due to the lack of an efficient similarity measure, and a multiple kernel criterion (MKC) is proposed for LR face recognition without any super-resolution (SR) preprocessing. Different image descriptors including RsL2, LBP, Gradientface and IMED are considered as the multiple kernel generators and the Gaussian function is exploited as the distance induced kernel. MKC solves this problem by minimizing the inconsistency between the similarities captured by the multiple kernels, and the nonlinear objective function can be alternatively minimized by a constrained eigenvalue decomposition. Experiments on benchmark databases show that our MKC method indeed improves the recognition performance.\",\"PeriodicalId\":287232,\"journal\":{\"name\":\"The First Asian Conference on Pattern Recognition\",\"volume\":\"398 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The First Asian Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2011.6166709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The First Asian Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2011.6166709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

实际的人脸识别系统有时会遇到低分辨率(LR)图像。现有的特征提取算法大多是为了在线性嵌入空间中保持输入空间对象之间的关系结构。然而,人们一致认为,通过采用多个描述符来更精确地描述数据以提高性能,可以很好地解决这种复杂的视觉学习任务。本文针对传统方法由于缺乏有效的相似性度量而难以实现LR和高分辨率图像匹配的问题,提出了一种无需超分辨率预处理的LR人脸识别多核准则(MKC)。将RsL2、LBP、Gradientface和IMED等不同的图像描述符作为多核生成器,利用高斯函数作为距离诱导核。MKC通过最小化多个核捕获的相似性之间的不一致性来解决这个问题,并且可以通过约束特征值分解来交替最小化非线性目标函数。在基准数据库上的实验表明,MKC方法确实提高了识别性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low resolution facial image recognition via multiple kernel criterion
Practical face recognition systems are sometimes confronted with low-resolution (LR) images. Most existing feature extraction algorithms aim to preserve relational structure among objects of the input space in a linear embedding space. However, it has been a consensus that such complex visual learning tasks will be well be solved by adopting multiple descriptors to more precisely characterize the data for improving performance. In this paper, we addresses the problem of matching LR and high-resolution images that are difficult for conventional methods in practice due to the lack of an efficient similarity measure, and a multiple kernel criterion (MKC) is proposed for LR face recognition without any super-resolution (SR) preprocessing. Different image descriptors including RsL2, LBP, Gradientface and IMED are considered as the multiple kernel generators and the Gaussian function is exploited as the distance induced kernel. MKC solves this problem by minimizing the inconsistency between the similarities captured by the multiple kernels, and the nonlinear objective function can be alternatively minimized by a constrained eigenvalue decomposition. Experiments on benchmark databases show that our MKC method indeed improves the recognition performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Geolocation based image annotation Discriminant appearance weighting for action recognition Tree crown detection in high resolution optical images during the early growth stages of Eucalyptus plantations in Brazil Designing and selecting features for MR image segmentation Adaptive Patch Alignment Based Local Binary Patterns for face recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1