对SEIADR和SEIR离散流行病模型进行了两种比较

I. Nino, M. Fernández, M. de La Sen, S. Alonso-Quesada, R. Nistal, A. Ibeas
{"title":"对SEIADR和SEIR离散流行病模型进行了两种比较","authors":"I. Nino, M. Fernández, M. de La Sen, S. Alonso-Quesada, R. Nistal, A. Ibeas","doi":"10.1109/ICTKE47035.2019.8966800","DOIUrl":null,"url":null,"abstract":"This paper obtains and studies discrete epidemic models of SEIADR (susceptible-exposed-asymptomatic infectious, symptomatic infectious, recovered, or immune, and dead-infective corpses) and SEIR continuous-time models. The first one incorporates the asymptomatic infectious and the lying infective bodies as infectious extra populations on the standard populations of SEIR type models. Several controls are proposed in the general case as, for instance, vaccination treatment and the removal of the infective lying corpses. The controls can include feedback information.","PeriodicalId":442255,"journal":{"name":"2019 17th International Conference on ICT and Knowledge Engineering (ICT&KE)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"About two compared SEIADR and SEIR discrete epidemic models\",\"authors\":\"I. Nino, M. Fernández, M. de La Sen, S. Alonso-Quesada, R. Nistal, A. Ibeas\",\"doi\":\"10.1109/ICTKE47035.2019.8966800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper obtains and studies discrete epidemic models of SEIADR (susceptible-exposed-asymptomatic infectious, symptomatic infectious, recovered, or immune, and dead-infective corpses) and SEIR continuous-time models. The first one incorporates the asymptomatic infectious and the lying infective bodies as infectious extra populations on the standard populations of SEIR type models. Several controls are proposed in the general case as, for instance, vaccination treatment and the removal of the infective lying corpses. The controls can include feedback information.\",\"PeriodicalId\":442255,\"journal\":{\"name\":\"2019 17th International Conference on ICT and Knowledge Engineering (ICT&KE)\",\"volume\":\"106 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 17th International Conference on ICT and Knowledge Engineering (ICT&KE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTKE47035.2019.8966800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 17th International Conference on ICT and Knowledge Engineering (ICT&KE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTKE47035.2019.8966800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文获得并研究了SEIADR(易感-暴露-无症状感染、症状感染、康复或免疫、感染死亡尸体)的离散流行模型和SEIR连续时间模型。第一种方法将无症状感染体和卧床感染体作为感染性额外群体纳入SEIR型模型的标准群体。在一般情况下,提出了几种控制措施,例如,接种疫苗治疗和清除具有传染性的躺卧尸体。控件可以包含反馈信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
About two compared SEIADR and SEIR discrete epidemic models
This paper obtains and studies discrete epidemic models of SEIADR (susceptible-exposed-asymptomatic infectious, symptomatic infectious, recovered, or immune, and dead-infective corpses) and SEIR continuous-time models. The first one incorporates the asymptomatic infectious and the lying infective bodies as infectious extra populations on the standard populations of SEIR type models. Several controls are proposed in the general case as, for instance, vaccination treatment and the removal of the infective lying corpses. The controls can include feedback information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Market Sentiment Classification from FinTech News Government Data Sharing Framework based on DIKW Hierarchy Model Big Data Mining: Managing the Costs of Data Mining Dartboard-like Leaderboard for Mapping Educator Career Competition in a Gamification System Preparation of Smart Card Data for Food Purchase Analysis of Students through Process Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1