{"title":"利用多个模拟器来跨越现实差距","authors":"A. Boeing, T. Bräunl","doi":"10.1109/ICARCV.2012.6485313","DOIUrl":null,"url":null,"abstract":"We propose a novel approach for transferring evolved control systems from a simulated environment to a real robot. Multiple dynamic simulation systems are simultaneously employed to provide a valid range of simulation variance that can be exploited to generate robust controllers in a purely virtual environment. These controllers can then be directly transferred to a physical robot.","PeriodicalId":441236,"journal":{"name":"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Leveraging multiple simulators for crossing the reality gap\",\"authors\":\"A. Boeing, T. Bräunl\",\"doi\":\"10.1109/ICARCV.2012.6485313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach for transferring evolved control systems from a simulated environment to a real robot. Multiple dynamic simulation systems are simultaneously employed to provide a valid range of simulation variance that can be exploited to generate robust controllers in a purely virtual environment. These controllers can then be directly transferred to a physical robot.\",\"PeriodicalId\":441236,\"journal\":{\"name\":\"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2012.6485313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Control Automation Robotics & Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2012.6485313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leveraging multiple simulators for crossing the reality gap
We propose a novel approach for transferring evolved control systems from a simulated environment to a real robot. Multiple dynamic simulation systems are simultaneously employed to provide a valid range of simulation variance that can be exploited to generate robust controllers in a purely virtual environment. These controllers can then be directly transferred to a physical robot.