Anne Dietrich, N. Kolbe, Nikolaos Sfakianakis, C. Surulescu
{"title":"胶质瘤侵袭的多尺度建模:从受体结合到通量有限的宏观PDEs","authors":"Anne Dietrich, N. Kolbe, Nikolaos Sfakianakis, C. Surulescu","doi":"10.1137/21m1412104","DOIUrl":null,"url":null,"abstract":"We propose a novel approach to modeling cell migration in an anisotropic environment with biochemical heterogeneity and interspecies interactions, using as a paradigm glioma invasion in brain tissue under the influence of hypoxia-triggered angiogenesis. The multiscale procedure links single-cell and mesoscopic dynamics with population level behavior, leading on the macroscopic scale to flux-limited glioma diffusion and multiple taxis. We verify the non-negativity of regular solutions (provided they exist) to the obtained macroscopic PDE-ODE system and perform numerical simulations to illustrate the solution behavior under several scenarios.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Multiscale Modeling of Glioma Invasion: From Receptor Binding to Flux-Limited Macroscopic PDEs\",\"authors\":\"Anne Dietrich, N. Kolbe, Nikolaos Sfakianakis, C. Surulescu\",\"doi\":\"10.1137/21m1412104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel approach to modeling cell migration in an anisotropic environment with biochemical heterogeneity and interspecies interactions, using as a paradigm glioma invasion in brain tissue under the influence of hypoxia-triggered angiogenesis. The multiscale procedure links single-cell and mesoscopic dynamics with population level behavior, leading on the macroscopic scale to flux-limited glioma diffusion and multiple taxis. We verify the non-negativity of regular solutions (provided they exist) to the obtained macroscopic PDE-ODE system and perform numerical simulations to illustrate the solution behavior under several scenarios.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1412104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1412104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiscale Modeling of Glioma Invasion: From Receptor Binding to Flux-Limited Macroscopic PDEs
We propose a novel approach to modeling cell migration in an anisotropic environment with biochemical heterogeneity and interspecies interactions, using as a paradigm glioma invasion in brain tissue under the influence of hypoxia-triggered angiogenesis. The multiscale procedure links single-cell and mesoscopic dynamics with population level behavior, leading on the macroscopic scale to flux-limited glioma diffusion and multiple taxis. We verify the non-negativity of regular solutions (provided they exist) to the obtained macroscopic PDE-ODE system and perform numerical simulations to illustrate the solution behavior under several scenarios.