CPU+GPU融合处理器(APU)并行计算效能研究

Mayank Daga, Ashwin M. Aji, Wu-chun Feng
{"title":"CPU+GPU融合处理器(APU)并行计算效能研究","authors":"Mayank Daga, Ashwin M. Aji, Wu-chun Feng","doi":"10.1109/SAAHPC.2011.29","DOIUrl":null,"url":null,"abstract":"The graphics processing unit (GPU) has made significant strides as an accelerator in parallel computing. However, because the GPU has resided out on PCIe as a discrete device, the performance of GPU applications can be bottlenecked by data transfers between the CPU and GPU over PCIe. Emerging heterogeneous computing architectures that \"fuse\" the functionality of the CPU and GPU, e.g., AMD Fusion and Intel Knights Ferry, hold the promise of addressing the PCIe bottleneck. In this paper, we empirically characterize and analyze the efficacy of AMD Fusion, an architecture that combines general-purposex86 cores and programmable accelerator cores on the same silicon die. We characterize its performance via a set of micro-benchmarks (e.g., PCIe data transfer), kernel benchmarks(e.g., reduction), and actual applications (e.g., molecular dynamics). Depending on the benchmark, our results show that Fusion produces a 1.7 to 6.0-fold improvement in the data-transfer time, when compared to a discrete GPU. In turn, this improvement in data-transfer performance can significantly enhance application performance. For example, running a reduction benchmark on AMD Fusion with its mere 80 GPU cores improves performance by 3.5-fold over the discrete AMD Radeon HD 5870 GPU with its 1600 more powerful GPU cores.","PeriodicalId":331604,"journal":{"name":"2011 Symposium on Application Accelerators in High-Performance Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":"{\"title\":\"On the Efficacy of a Fused CPU+GPU Processor (or APU) for Parallel Computing\",\"authors\":\"Mayank Daga, Ashwin M. Aji, Wu-chun Feng\",\"doi\":\"10.1109/SAAHPC.2011.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The graphics processing unit (GPU) has made significant strides as an accelerator in parallel computing. However, because the GPU has resided out on PCIe as a discrete device, the performance of GPU applications can be bottlenecked by data transfers between the CPU and GPU over PCIe. Emerging heterogeneous computing architectures that \\\"fuse\\\" the functionality of the CPU and GPU, e.g., AMD Fusion and Intel Knights Ferry, hold the promise of addressing the PCIe bottleneck. In this paper, we empirically characterize and analyze the efficacy of AMD Fusion, an architecture that combines general-purposex86 cores and programmable accelerator cores on the same silicon die. We characterize its performance via a set of micro-benchmarks (e.g., PCIe data transfer), kernel benchmarks(e.g., reduction), and actual applications (e.g., molecular dynamics). Depending on the benchmark, our results show that Fusion produces a 1.7 to 6.0-fold improvement in the data-transfer time, when compared to a discrete GPU. In turn, this improvement in data-transfer performance can significantly enhance application performance. For example, running a reduction benchmark on AMD Fusion with its mere 80 GPU cores improves performance by 3.5-fold over the discrete AMD Radeon HD 5870 GPU with its 1600 more powerful GPU cores.\",\"PeriodicalId\":331604,\"journal\":{\"name\":\"2011 Symposium on Application Accelerators in High-Performance Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"138\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Symposium on Application Accelerators in High-Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAAHPC.2011.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Symposium on Application Accelerators in High-Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAAHPC.2011.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138

摘要

图形处理单元(GPU)作为并行计算的加速器已经取得了重大进展。然而,由于GPU作为一个独立的设备驻留在PCIe上,GPU应用程序的性能可能会受到CPU和GPU之间通过PCIe传输数据的瓶颈。新兴的异构计算架构“融合”了CPU和GPU的功能,例如AMD Fusion和Intel Knights Ferry,有望解决PCIe瓶颈问题。在本文中,我们对AMD Fusion的效能进行了实证表征和分析,这是一种将通用86内核和可编程加速器内核结合在同一硅片上的架构。我们通过一组微基准(例如PCIe数据传输)、内核基准(例如PCIe数据传输)来描述它的性能。(还原)和实际应用(如分子动力学)。根据基准测试,我们的结果表明,与独立GPU相比,Fusion在数据传输时间上提高了1.7到6.0倍。反过来,数据传输性能的改进可以显著提高应用程序性能。例如,在只有80个GPU核的AMD Fusion上运行缩减基准测试,性能比拥有1600个更强大GPU核的AMD Radeon HD 5870独立GPU提高3.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Efficacy of a Fused CPU+GPU Processor (or APU) for Parallel Computing
The graphics processing unit (GPU) has made significant strides as an accelerator in parallel computing. However, because the GPU has resided out on PCIe as a discrete device, the performance of GPU applications can be bottlenecked by data transfers between the CPU and GPU over PCIe. Emerging heterogeneous computing architectures that "fuse" the functionality of the CPU and GPU, e.g., AMD Fusion and Intel Knights Ferry, hold the promise of addressing the PCIe bottleneck. In this paper, we empirically characterize and analyze the efficacy of AMD Fusion, an architecture that combines general-purposex86 cores and programmable accelerator cores on the same silicon die. We characterize its performance via a set of micro-benchmarks (e.g., PCIe data transfer), kernel benchmarks(e.g., reduction), and actual applications (e.g., molecular dynamics). Depending on the benchmark, our results show that Fusion produces a 1.7 to 6.0-fold improvement in the data-transfer time, when compared to a discrete GPU. In turn, this improvement in data-transfer performance can significantly enhance application performance. For example, running a reduction benchmark on AMD Fusion with its mere 80 GPU cores improves performance by 3.5-fold over the discrete AMD Radeon HD 5870 GPU with its 1600 more powerful GPU cores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experience Applying Fortran GPU Compilers to Numerical Weather Prediction Implications of Memory-Efficiency on Sparse Matrix-Vector Multiplication Application of Graphics Processing Units (GPUs) to the Study of Non-linear Dynamics of the Exciton Bose-Einstein Condensate in a Semiconductor Quantum Well A Class of Hybrid LAPACK Algorithms for Multicore and GPU Architectures Evaluation of GPU Architectures Using Spiking Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1