入侵检测系统的高效特征选择

S. Ahmadi, S. Rashad, H. Elgazzar
{"title":"入侵检测系统的高效特征选择","authors":"S. Ahmadi, S. Rashad, H. Elgazzar","doi":"10.1109/UEMCON47517.2019.8992960","DOIUrl":null,"url":null,"abstract":"Intrusion detection systems (IDSs) monitor network traffics to find suspicious activities, such as an attack or illegal activities. These systems play an important role in securing computer networks. Due to availability of irrelevant or redundant features and big dimensionality of network datasets which results to an inefficient detection process, this study, focused on identifying important attributes in order to build an effective IDS. A majority vote system, using three standard feature selection methods, Correlation-based feature selection, Information Gain, and Chi-square is proposed to select the most relevant features for IDS. The decision tree classifier is applied on reduced feature sets to build an intrusion detection system. The results show that selected reduced attributes from the novel feature selection system give a better performance for building a computationally efficient IDS system.","PeriodicalId":187022,"journal":{"name":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Efficient Feature Selection for Intrusion Detection Systems\",\"authors\":\"S. Ahmadi, S. Rashad, H. Elgazzar\",\"doi\":\"10.1109/UEMCON47517.2019.8992960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intrusion detection systems (IDSs) monitor network traffics to find suspicious activities, such as an attack or illegal activities. These systems play an important role in securing computer networks. Due to availability of irrelevant or redundant features and big dimensionality of network datasets which results to an inefficient detection process, this study, focused on identifying important attributes in order to build an effective IDS. A majority vote system, using three standard feature selection methods, Correlation-based feature selection, Information Gain, and Chi-square is proposed to select the most relevant features for IDS. The decision tree classifier is applied on reduced feature sets to build an intrusion detection system. The results show that selected reduced attributes from the novel feature selection system give a better performance for building a computationally efficient IDS system.\",\"PeriodicalId\":187022,\"journal\":{\"name\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UEMCON47517.2019.8992960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON47517.2019.8992960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

入侵检测系统(Intrusion detection system, ids)通过监控网络流量,发现可疑活动,如攻击或非法活动。这些系统在保护计算机网络安全方面发挥着重要作用。由于网络数据集存在不相关或冗余的特征,且网络数据集的维度较大,导致检测过程效率低下,因此本研究将重点放在识别重要属性以构建有效的入侵检测系统上。提出了一种基于相关性特征选择、信息增益和卡方三种标准特征选择方法的多数投票系统,以选择最相关的IDS特征。将决策树分类器应用于约简特征集,构建入侵检测系统。结果表明,从新的特征选择系统中选择的约简属性为构建计算效率高的IDS系统提供了更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Feature Selection for Intrusion Detection Systems
Intrusion detection systems (IDSs) monitor network traffics to find suspicious activities, such as an attack or illegal activities. These systems play an important role in securing computer networks. Due to availability of irrelevant or redundant features and big dimensionality of network datasets which results to an inefficient detection process, this study, focused on identifying important attributes in order to build an effective IDS. A majority vote system, using three standard feature selection methods, Correlation-based feature selection, Information Gain, and Chi-square is proposed to select the most relevant features for IDS. The decision tree classifier is applied on reduced feature sets to build an intrusion detection system. The results show that selected reduced attributes from the novel feature selection system give a better performance for building a computationally efficient IDS system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning for DDoS Attack Classification Using Hive Plots Low Power Design for DVFS Capable Software ADREMOVER: THE IMPROVED MACHINE LEARNING APPROACH FOR BLOCKING ADS Overhead View Person Detection Using YOLO Multi-sensor Wearable for Child Safety
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1