一种彩色人脸识别的混合融合方案

Yuwu Lu, Lunke Fei, Yan Chen
{"title":"一种彩色人脸识别的混合融合方案","authors":"Yuwu Lu, Lunke Fei, Yan Chen","doi":"10.1109/SMARTCOMP.2014.7043837","DOIUrl":null,"url":null,"abstract":"In different color spaces, the three color channels might have different relationship, but most of color face recognition methods exploit the color information in a simple way. In this paper, we propose a novel hybrid fusion scheme for color face recognition, which first uses two-phase test sample representation (TPTSR) to obtain matching scores of each color channel of the test sample and then uses the hybrid fusion scheme to combine these three kinds of matching scores for classification of the test sample. The hybrid fusion scheme exploits low- and high-order components of three kinds of matching scores based on the sum and product rule. Scores from each color channel generated from TPTSR includes both little correlated and very correlated scores, to extract low- and high-order components of these scores will allow them to be well integrated and used for classification. For evaluating the proposed method, we not only make a comparison of our method with some global and local methods such as principal component analysis (PCA), linear discriminant analysis (LDA), kernel PCA (KPCA), kernel LDA (KLDA), locality preserving projection (LPP) and TPTSR. We also make a comparison of our method with some recently proposed local feature based methods, such as color local Gabor wavelets (CLGW), color local binary pattern (CLBP) and tensor discriminant color space (TDCS).","PeriodicalId":169858,"journal":{"name":"2014 International Conference on Smart Computing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid fusion scheme for color face recognition\",\"authors\":\"Yuwu Lu, Lunke Fei, Yan Chen\",\"doi\":\"10.1109/SMARTCOMP.2014.7043837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In different color spaces, the three color channels might have different relationship, but most of color face recognition methods exploit the color information in a simple way. In this paper, we propose a novel hybrid fusion scheme for color face recognition, which first uses two-phase test sample representation (TPTSR) to obtain matching scores of each color channel of the test sample and then uses the hybrid fusion scheme to combine these three kinds of matching scores for classification of the test sample. The hybrid fusion scheme exploits low- and high-order components of three kinds of matching scores based on the sum and product rule. Scores from each color channel generated from TPTSR includes both little correlated and very correlated scores, to extract low- and high-order components of these scores will allow them to be well integrated and used for classification. For evaluating the proposed method, we not only make a comparison of our method with some global and local methods such as principal component analysis (PCA), linear discriminant analysis (LDA), kernel PCA (KPCA), kernel LDA (KLDA), locality preserving projection (LPP) and TPTSR. We also make a comparison of our method with some recently proposed local feature based methods, such as color local Gabor wavelets (CLGW), color local binary pattern (CLBP) and tensor discriminant color space (TDCS).\",\"PeriodicalId\":169858,\"journal\":{\"name\":\"2014 International Conference on Smart Computing\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Smart Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP.2014.7043837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Smart Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2014.7043837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在不同的色彩空间中,三个色彩通道的关系可能不同,但大多数彩色人脸识别方法都是简单地利用颜色信息。本文提出了一种新的彩色人脸识别混合融合方案,该方案首先利用两阶段测试样本表示(TPTSR)获得测试样本各颜色通道的匹配分数,然后利用混合融合方案将这三种匹配分数组合起来对测试样本进行分类。混合融合方案基于和积规则,利用三种匹配分数的低阶分量和高阶分量。从TPTSR生成的每个颜色通道的分数包括低相关性和高度相关性的分数,提取这些分数的低阶和高阶成分将使它们能够很好地整合并用于分类。为了评价该方法,我们不仅将该方法与一些全局和局部方法如主成分分析(PCA)、线性判别分析(LDA)、核主成分分析(KPCA)、核主成分分析(KLDA)、局部保持投影(LPP)和TPTSR进行了比较。我们还将该方法与最近提出的基于局部特征的方法进行了比较,如颜色局部Gabor小波(CLGW)、颜色局部二值模式(CLBP)和张量判别颜色空间(TDCS)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A hybrid fusion scheme for color face recognition
In different color spaces, the three color channels might have different relationship, but most of color face recognition methods exploit the color information in a simple way. In this paper, we propose a novel hybrid fusion scheme for color face recognition, which first uses two-phase test sample representation (TPTSR) to obtain matching scores of each color channel of the test sample and then uses the hybrid fusion scheme to combine these three kinds of matching scores for classification of the test sample. The hybrid fusion scheme exploits low- and high-order components of three kinds of matching scores based on the sum and product rule. Scores from each color channel generated from TPTSR includes both little correlated and very correlated scores, to extract low- and high-order components of these scores will allow them to be well integrated and used for classification. For evaluating the proposed method, we not only make a comparison of our method with some global and local methods such as principal component analysis (PCA), linear discriminant analysis (LDA), kernel PCA (KPCA), kernel LDA (KLDA), locality preserving projection (LPP) and TPTSR. We also make a comparison of our method with some recently proposed local feature based methods, such as color local Gabor wavelets (CLGW), color local binary pattern (CLBP) and tensor discriminant color space (TDCS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classifying Smart Objects using capabilities Gas mixture control system for oxygen therapy in pre-term infants Harmful algal blooms prediction with machine learning models in Tolo Harbour Facial expression recognition and generation using sparse autoencoder A MAP estimation based segmentation model for speckled images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1