一种实现高效序列聚类的框架

Wei Wang, Jiong Yang
{"title":"一种实现高效序列聚类的框架","authors":"Wei Wang, Jiong Yang","doi":"10.1109/ICDE.2002.994736","DOIUrl":null,"url":null,"abstract":"Analyzing sequence data (particularly in categorical domains) has become increasingly important, partially due to the significant advances in biology and other fields. Examples of sequence data include DNA sequences, unfolded protein sequences, text documents, Web usage data, system traces, etc. Previous work on mining sequence data has mainly focused on frequent pattern discovery. In this project, we focus on the problem of clustering sequence data.","PeriodicalId":191529,"journal":{"name":"Proceedings 18th International Conference on Data Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework towards efficient and effective sequence clustering\",\"authors\":\"Wei Wang, Jiong Yang\",\"doi\":\"10.1109/ICDE.2002.994736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyzing sequence data (particularly in categorical domains) has become increasingly important, partially due to the significant advances in biology and other fields. Examples of sequence data include DNA sequences, unfolded protein sequences, text documents, Web usage data, system traces, etc. Previous work on mining sequence data has mainly focused on frequent pattern discovery. In this project, we focus on the problem of clustering sequence data.\",\"PeriodicalId\":191529,\"journal\":{\"name\":\"Proceedings 18th International Conference on Data Engineering\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 18th International Conference on Data Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDE.2002.994736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 18th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2002.994736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分析序列数据(特别是在分类领域)变得越来越重要,部分原因是生物学和其他领域的重大进展。序列数据的示例包括DNA序列、未折叠的蛋白质序列、文本文档、Web使用数据、系统跟踪等。以往的序列数据挖掘工作主要集中在频繁模式发现上。本课题主要研究序列数据的聚类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A framework towards efficient and effective sequence clustering
Analyzing sequence data (particularly in categorical domains) has become increasingly important, partially due to the significant advances in biology and other fields. Examples of sequence data include DNA sequences, unfolded protein sequences, text documents, Web usage data, system traces, etc. Previous work on mining sequence data has mainly focused on frequent pattern discovery. In this project, we focus on the problem of clustering sequence data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Out from under the trees [linear file template] Declarative composition and peer-to-peer provisioning of dynamic Web services Multivariate time series prediction via temporal classification Integrating workflow management systems with business-to-business interaction standards YFilter: efficient and scalable filtering of XML documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1