{"title":"基于人工神经网络的储能光伏电站日前和实时竞价研究","authors":"T. Ochoa, E. Gil, A. Angulo","doi":"10.1109/PESGM48719.2022.9916732","DOIUrl":null,"url":null,"abstract":"This paper proposes the use of Artificial Neural Networks (ANN) for the efficient bidding of a Photovoltaic power plant with Energy Storage System (PV-ESS) participating in Day-Ahead (DA) and Real-Time (RT) energy and reserve markets under uncertainty. The Energy Management System (EMS) is based on Multi-Agent Deep Reinforcement Learning (MADRL). The MADRL scheme aims to maximize the profit of the hybrid PV-ESS plant through an efficient bidding in both markets. Results show that the MADRL framework can fulfill both the financial and physical constraints faced by the PV-ESS plant while providing energy and ancillary services. Daily market incomes have comparable mean values regarding traditional optimization approaches (average value of 1839 USD), but with a 45.3% smaller variance. Furthermore, it maintains a reference-tracking performance of 86.63% for one-year-round participation, against a 73.05% and 79.13% performance obtained with scenario-based robust and stochastic programming implementations, respectively.","PeriodicalId":388672,"journal":{"name":"2022 IEEE Power & Energy Society General Meeting (PESGM)","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Bidding of a PV Power Plant with Energy Storage Participating in Day-Ahead and Real-Time Markets Using Artificial Neural Networks\",\"authors\":\"T. Ochoa, E. Gil, A. Angulo\",\"doi\":\"10.1109/PESGM48719.2022.9916732\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes the use of Artificial Neural Networks (ANN) for the efficient bidding of a Photovoltaic power plant with Energy Storage System (PV-ESS) participating in Day-Ahead (DA) and Real-Time (RT) energy and reserve markets under uncertainty. The Energy Management System (EMS) is based on Multi-Agent Deep Reinforcement Learning (MADRL). The MADRL scheme aims to maximize the profit of the hybrid PV-ESS plant through an efficient bidding in both markets. Results show that the MADRL framework can fulfill both the financial and physical constraints faced by the PV-ESS plant while providing energy and ancillary services. Daily market incomes have comparable mean values regarding traditional optimization approaches (average value of 1839 USD), but with a 45.3% smaller variance. Furthermore, it maintains a reference-tracking performance of 86.63% for one-year-round participation, against a 73.05% and 79.13% performance obtained with scenario-based robust and stochastic programming implementations, respectively.\",\"PeriodicalId\":388672,\"journal\":{\"name\":\"2022 IEEE Power & Energy Society General Meeting (PESGM)\",\"volume\":\"152 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Power & Energy Society General Meeting (PESGM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESGM48719.2022.9916732\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Power & Energy Society General Meeting (PESGM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM48719.2022.9916732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Bidding of a PV Power Plant with Energy Storage Participating in Day-Ahead and Real-Time Markets Using Artificial Neural Networks
This paper proposes the use of Artificial Neural Networks (ANN) for the efficient bidding of a Photovoltaic power plant with Energy Storage System (PV-ESS) participating in Day-Ahead (DA) and Real-Time (RT) energy and reserve markets under uncertainty. The Energy Management System (EMS) is based on Multi-Agent Deep Reinforcement Learning (MADRL). The MADRL scheme aims to maximize the profit of the hybrid PV-ESS plant through an efficient bidding in both markets. Results show that the MADRL framework can fulfill both the financial and physical constraints faced by the PV-ESS plant while providing energy and ancillary services. Daily market incomes have comparable mean values regarding traditional optimization approaches (average value of 1839 USD), but with a 45.3% smaller variance. Furthermore, it maintains a reference-tracking performance of 86.63% for one-year-round participation, against a 73.05% and 79.13% performance obtained with scenario-based robust and stochastic programming implementations, respectively.