基于TEO非线性特征的汉语语音情感分类

Gao Hui, Chen Shanguang, Su Guangchuan
{"title":"基于TEO非线性特征的汉语语音情感分类","authors":"Gao Hui, Chen Shanguang, Su Guangchuan","doi":"10.1109/SNPD.2007.487","DOIUrl":null,"url":null,"abstract":"To study effective speech features which can represent different emotion styles in mandarin speech, nonlinear features based on Teager Energy Operator(TEO) are researched. Neutral state and 3 emotional states (i.e. happiness, anger and sadness) are classified from the mandarin speech database. MFCC extraction and HMM-based emotion recognition are used as baseline system to evaluate the emotional classification performance of TEO-based features. In comparison with MFCC, while text- dependent, improvements of classification capacity are obtained when using all 4 nonlinear features (i.e. NFD_Mel, AF_Mel, DAF_Mel, AM_SBCC). While text-independent, the performance of emotion classification are improved by using NFD_Mel, AF_Mel and DAF_Mel, but deteriorated by using AM_SBCC. The results of classification demonstrate that the nonlinear features based on TEO, when using NFD_Mel, AF_Mel and DAF_Mel, are better able to represent different emotion styles in speech than that of MFCC.","PeriodicalId":197058,"journal":{"name":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","volume":"293 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Emotion Classification of Mandarin Speech Based on TEO Nonlinear Features\",\"authors\":\"Gao Hui, Chen Shanguang, Su Guangchuan\",\"doi\":\"10.1109/SNPD.2007.487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To study effective speech features which can represent different emotion styles in mandarin speech, nonlinear features based on Teager Energy Operator(TEO) are researched. Neutral state and 3 emotional states (i.e. happiness, anger and sadness) are classified from the mandarin speech database. MFCC extraction and HMM-based emotion recognition are used as baseline system to evaluate the emotional classification performance of TEO-based features. In comparison with MFCC, while text- dependent, improvements of classification capacity are obtained when using all 4 nonlinear features (i.e. NFD_Mel, AF_Mel, DAF_Mel, AM_SBCC). While text-independent, the performance of emotion classification are improved by using NFD_Mel, AF_Mel and DAF_Mel, but deteriorated by using AM_SBCC. The results of classification demonstrate that the nonlinear features based on TEO, when using NFD_Mel, AF_Mel and DAF_Mel, are better able to represent different emotion styles in speech than that of MFCC.\",\"PeriodicalId\":197058,\"journal\":{\"name\":\"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)\",\"volume\":\"293 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD.2007.487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2007.487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

为了研究汉语语音中能够表现不同情感风格的有效语音特征,研究了基于Teager能量算子(TEO)的非线性特征。从普通话语音数据库中对中性状态和三种情绪状态(即快乐、愤怒和悲伤)进行了分类。以MFCC提取和基于hmm的情感识别作为基线系统,评价基于teo特征的情感分类性能。与MFCC相比,虽然依赖于文本,但当使用所有4个非线性特征(即NFD_Mel, AF_Mel, DAF_Mel, AM_SBCC)时,分类能力得到了提高。在与文本无关的情况下,使用NFD_Mel、AF_Mel和DAF_Mel可以提高情绪分类的性能,而使用AM_SBCC则会降低情绪分类的性能。分类结果表明,与MFCC相比,基于TEO的非线性特征在使用NFD_Mel、AF_Mel和DAF_Mel时能够更好地表示语音中的不同情感风格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emotion Classification of Mandarin Speech Based on TEO Nonlinear Features
To study effective speech features which can represent different emotion styles in mandarin speech, nonlinear features based on Teager Energy Operator(TEO) are researched. Neutral state and 3 emotional states (i.e. happiness, anger and sadness) are classified from the mandarin speech database. MFCC extraction and HMM-based emotion recognition are used as baseline system to evaluate the emotional classification performance of TEO-based features. In comparison with MFCC, while text- dependent, improvements of classification capacity are obtained when using all 4 nonlinear features (i.e. NFD_Mel, AF_Mel, DAF_Mel, AM_SBCC). While text-independent, the performance of emotion classification are improved by using NFD_Mel, AF_Mel and DAF_Mel, but deteriorated by using AM_SBCC. The results of classification demonstrate that the nonlinear features based on TEO, when using NFD_Mel, AF_Mel and DAF_Mel, are better able to represent different emotion styles in speech than that of MFCC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An RBF Network Based Beamformer for Mimo Wireless Communication Systems Tailoring Software Evolution Process Communication Optimization Algorithms based on Extend Data Flow Graph Improving Blind Equalization Algorithm for Wireless Communication Systems Speech Enhancement Employing Modified a Priori SNR Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1