{"title":"涡轮发动机起动仿真","authors":"Sergiy Yepifanov, F. Sirenko","doi":"10.5772/intechopen.90803","DOIUrl":null,"url":null,"abstract":"The process of engine control development requires the models that describe engine operation and its response on a control action. The development flow required numerous models to be engaged, like component-level non-linear model, engine-level non-linear model, linear dynamic model, etc. Models made a great progress during the recent years and became reliable tools for control engineers. However, most models are derivatives from the component-level non-linear model, which in its turn consumes the component performances. Things turn different when one addresses the starting range of engine operation. The problem here is all about the missing performances of the engine components, as it is quite hard to harvest these performances in this region as the processes that happen in the engine are transient by nature. Different scientists offered different approaches to the problem of building the component level non-linear model of the sub-idle region, but the general idea is to somehow extrapolate the known performances to the sub-idle region. However, there are no known reports about a model that considers all aspects of this approach and simulates the engine starting. In this chapter, you can find an alternative view on a problem of simulation of a sub-idle operation. The proposed model belongs to a group of linear dynamic models including the static model as well as simplified static model to support the dynamic model. Instead of trying to extrapolate component performances and get the full-scale component-level model, you will see that the canonical component performances are replaced by the direct relations between parameters that are used in the control algorithms, like gas-path parameters against the RPM. As well in this chapter, you will find the exact instructions on how to create the model and an example of the one with the real test data.","PeriodicalId":179085,"journal":{"name":"Gas Turbines - Control, Diagnostics, Simulation, and Measurements [Working Title]","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbine Engine Starting Simulation\",\"authors\":\"Sergiy Yepifanov, F. Sirenko\",\"doi\":\"10.5772/intechopen.90803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The process of engine control development requires the models that describe engine operation and its response on a control action. The development flow required numerous models to be engaged, like component-level non-linear model, engine-level non-linear model, linear dynamic model, etc. Models made a great progress during the recent years and became reliable tools for control engineers. However, most models are derivatives from the component-level non-linear model, which in its turn consumes the component performances. Things turn different when one addresses the starting range of engine operation. The problem here is all about the missing performances of the engine components, as it is quite hard to harvest these performances in this region as the processes that happen in the engine are transient by nature. Different scientists offered different approaches to the problem of building the component level non-linear model of the sub-idle region, but the general idea is to somehow extrapolate the known performances to the sub-idle region. However, there are no known reports about a model that considers all aspects of this approach and simulates the engine starting. In this chapter, you can find an alternative view on a problem of simulation of a sub-idle operation. The proposed model belongs to a group of linear dynamic models including the static model as well as simplified static model to support the dynamic model. Instead of trying to extrapolate component performances and get the full-scale component-level model, you will see that the canonical component performances are replaced by the direct relations between parameters that are used in the control algorithms, like gas-path parameters against the RPM. As well in this chapter, you will find the exact instructions on how to create the model and an example of the one with the real test data.\",\"PeriodicalId\":179085,\"journal\":{\"name\":\"Gas Turbines - Control, Diagnostics, Simulation, and Measurements [Working Title]\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gas Turbines - Control, Diagnostics, Simulation, and Measurements [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.90803\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Turbines - Control, Diagnostics, Simulation, and Measurements [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.90803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The process of engine control development requires the models that describe engine operation and its response on a control action. The development flow required numerous models to be engaged, like component-level non-linear model, engine-level non-linear model, linear dynamic model, etc. Models made a great progress during the recent years and became reliable tools for control engineers. However, most models are derivatives from the component-level non-linear model, which in its turn consumes the component performances. Things turn different when one addresses the starting range of engine operation. The problem here is all about the missing performances of the engine components, as it is quite hard to harvest these performances in this region as the processes that happen in the engine are transient by nature. Different scientists offered different approaches to the problem of building the component level non-linear model of the sub-idle region, but the general idea is to somehow extrapolate the known performances to the sub-idle region. However, there are no known reports about a model that considers all aspects of this approach and simulates the engine starting. In this chapter, you can find an alternative view on a problem of simulation of a sub-idle operation. The proposed model belongs to a group of linear dynamic models including the static model as well as simplified static model to support the dynamic model. Instead of trying to extrapolate component performances and get the full-scale component-level model, you will see that the canonical component performances are replaced by the direct relations between parameters that are used in the control algorithms, like gas-path parameters against the RPM. As well in this chapter, you will find the exact instructions on how to create the model and an example of the one with the real test data.