2 . path:一个以图数据库为模型的萜类代谢网络

Waldeyr M. C. Silva, Danilo Vilar, Daniel S. Souza, M. E. Walter, M. Brigido, M. Holanda
{"title":"2 . path:一个以图数据库为模型的萜类代谢网络","authors":"Waldeyr M. C. Silva, Danilo Vilar, Daniel S. Souza, M. E. Walter, M. Brigido, M. Holanda","doi":"10.1109/BIBM.2016.7822709","DOIUrl":null,"url":null,"abstract":"Terpenoids are involved in interactions as signaling for communication intra/inter species, signal molecules to attract pollinating insects, and defense against herbivores and microbes. Due to their chemical composition, many terpenoids possess vast pharmacological applicability in medicine and biotechnology, besides important roles in ecology, industry and commerce. The biosynthesis of terpenes has been widely studied over the years, and it is well known that they can be synthesized from two metabolic pathways: mevalonate pathway (MVA) and non-mevalonate pathway (MEP). On the other hand, genome-scale reconstruction of metabolic networks faces many challenges, including organizational data storage and data modeling, to properly represent the complexity of systems biology. Recent NoSQL database paradigms have introduced new concepts of scalable storage and data queries. Among them graph databases, which are versatile enough to cope with biological data. In this paper, we propose 2Path, a graph database model designed to represent terpenoid metabolic networks, with thousands of secondary metabolism reactions, such that it preserves important terpenoid biosynthesis characteristics.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2Path: A terpenoid metabolic network modeled as graph database\",\"authors\":\"Waldeyr M. C. Silva, Danilo Vilar, Daniel S. Souza, M. E. Walter, M. Brigido, M. Holanda\",\"doi\":\"10.1109/BIBM.2016.7822709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terpenoids are involved in interactions as signaling for communication intra/inter species, signal molecules to attract pollinating insects, and defense against herbivores and microbes. Due to their chemical composition, many terpenoids possess vast pharmacological applicability in medicine and biotechnology, besides important roles in ecology, industry and commerce. The biosynthesis of terpenes has been widely studied over the years, and it is well known that they can be synthesized from two metabolic pathways: mevalonate pathway (MVA) and non-mevalonate pathway (MEP). On the other hand, genome-scale reconstruction of metabolic networks faces many challenges, including organizational data storage and data modeling, to properly represent the complexity of systems biology. Recent NoSQL database paradigms have introduced new concepts of scalable storage and data queries. Among them graph databases, which are versatile enough to cope with biological data. In this paper, we propose 2Path, a graph database model designed to represent terpenoid metabolic networks, with thousands of secondary metabolism reactions, such that it preserves important terpenoid biosynthesis characteristics.\",\"PeriodicalId\":345384,\"journal\":{\"name\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2016.7822709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

萜类化合物参与相互作用,作为物种内/物种间交流的信号,吸引传粉昆虫的信号分子,以及防御食草动物和微生物。由于其化学组成,许多萜类化合物在医学和生物技术方面具有广泛的药理适用性,除了在生态、工业和商业方面具有重要作用。萜烯的生物合成已被广泛研究多年,众所周知,它们可以通过两种代谢途径合成:甲羟戊酸途径(MVA)和非甲羟戊酸途径(MEP)。另一方面,代谢网络的基因组尺度重建面临着许多挑战,包括组织数据存储和数据建模,以正确地表示系统生物学的复杂性。最近的NoSQL数据库范例引入了可伸缩存储和数据查询的新概念。其中包括图形数据库,它具有足够的通用性来处理生物数据。在本文中,我们提出了2Path,这是一个旨在表示萜类代谢网络的图形数据库模型,具有数千个次级代谢反应,因此它保留了重要的萜类生物合成特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2Path: A terpenoid metabolic network modeled as graph database
Terpenoids are involved in interactions as signaling for communication intra/inter species, signal molecules to attract pollinating insects, and defense against herbivores and microbes. Due to their chemical composition, many terpenoids possess vast pharmacological applicability in medicine and biotechnology, besides important roles in ecology, industry and commerce. The biosynthesis of terpenes has been widely studied over the years, and it is well known that they can be synthesized from two metabolic pathways: mevalonate pathway (MVA) and non-mevalonate pathway (MEP). On the other hand, genome-scale reconstruction of metabolic networks faces many challenges, including organizational data storage and data modeling, to properly represent the complexity of systems biology. Recent NoSQL database paradigms have introduced new concepts of scalable storage and data queries. Among them graph databases, which are versatile enough to cope with biological data. In this paper, we propose 2Path, a graph database model designed to represent terpenoid metabolic networks, with thousands of secondary metabolism reactions, such that it preserves important terpenoid biosynthesis characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1