金融统计数据

Jonathan B. Cohn, Zack Liu, M. Wardlaw
{"title":"金融统计数据","authors":"Jonathan B. Cohn, Zack Liu, M. Wardlaw","doi":"10.2139/ssrn.3800339","DOIUrl":null,"url":null,"abstract":"This paper examines the use of count data-based outcome variables such as corporate patents in empirical corporate finance research. We demonstrate that the common practice of regressing the log of one plus the count on covariates (\"LOG1PLUS\" regression) produces biased and inconsistent estimates of objects of interest and lacks meaningful interpretation. Poisson regressions have simple interpretations and produce unbiased and consistent estimates under standard exogeneity assumptions, though they lose efficiency if the count data is overdispersed. Replicating several recent papers on corporate patenting, we find that LOG1PLUS and Poisson regressions frequently produce meaningfully different estimates and that bias in LOG1PLUS regressions is likely large.","PeriodicalId":414983,"journal":{"name":"IRPN: Innovation & Finance (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Count Data in Finance\",\"authors\":\"Jonathan B. Cohn, Zack Liu, M. Wardlaw\",\"doi\":\"10.2139/ssrn.3800339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper examines the use of count data-based outcome variables such as corporate patents in empirical corporate finance research. We demonstrate that the common practice of regressing the log of one plus the count on covariates (\\\"LOG1PLUS\\\" regression) produces biased and inconsistent estimates of objects of interest and lacks meaningful interpretation. Poisson regressions have simple interpretations and produce unbiased and consistent estimates under standard exogeneity assumptions, though they lose efficiency if the count data is overdispersed. Replicating several recent papers on corporate patenting, we find that LOG1PLUS and Poisson regressions frequently produce meaningfully different estimates and that bias in LOG1PLUS regressions is likely large.\",\"PeriodicalId\":414983,\"journal\":{\"name\":\"IRPN: Innovation & Finance (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IRPN: Innovation & Finance (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3800339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IRPN: Innovation & Finance (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3800339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文探讨了在实证公司财务研究中使用基于计数数据的结果变量,如公司专利。我们证明,回归1的对数加上协变量的计数(“LOG1PLUS”回归)的常见做法会对感兴趣的对象产生有偏差和不一致的估计,并且缺乏有意义的解释。泊松回归具有简单的解释,并在标准的外生性假设下产生无偏和一致的估计,尽管如果计数数据过度分散,它们会失去效率。复制最近几篇关于企业专利的论文,我们发现LOG1PLUS和泊松回归经常产生有意义的不同估计,并且LOG1PLUS回归的偏差可能很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Count Data in Finance
This paper examines the use of count data-based outcome variables such as corporate patents in empirical corporate finance research. We demonstrate that the common practice of regressing the log of one plus the count on covariates ("LOG1PLUS" regression) produces biased and inconsistent estimates of objects of interest and lacks meaningful interpretation. Poisson regressions have simple interpretations and produce unbiased and consistent estimates under standard exogeneity assumptions, though they lose efficiency if the count data is overdispersed. Replicating several recent papers on corporate patenting, we find that LOG1PLUS and Poisson regressions frequently produce meaningfully different estimates and that bias in LOG1PLUS regressions is likely large.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cryptocurrency, Mining Pools' Concentration, and Asset Prices Cryptocurrency, green and fossil fuel investments Property rights in the Crypto age: NFTs and the auctioning of limited edition artwork Does One Size Fit All? Comparing the Determinants of Fintech Market Segments Expansion (Conference Presentation) Bubbles in Ethereum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1