发现兴趣的空间混合模式

Yiqun Xie, Han Bao, Y. Li, S. Shekhar
{"title":"发现兴趣的空间混合模式","authors":"Yiqun Xie, Han Bao, Y. Li, S. Shekhar","doi":"10.1145/3397536.3422217","DOIUrl":null,"url":null,"abstract":"Given a collection of N geo-located point samples of k types, we aim to detect spatial mixture patterns of interest, which are sub-regions of the study area that have significantly high or low mixture of points of different types. Spatial mixture patterns have important applications in many societal domains, including resilience of smart cities and communities, biodiversity, equity, business intelligence, etc. The problem is challenging because ranking and selection of candidate patterns can be highly susceptible to the effect of natural randomness, and real-world data often consists of various mixture patterns. In related work, the multi-nomial scan statistic does not support identification of high or low mixture due to its \"directionless\" nature and high sensitivity to the composition of mixture patterns in data. While species richness indices in biodiversity research allow specification of directions, the measures are very sensitive to spatial randomness effects. To bridge the gap, we first propose a spatial mixture index to provide robust ranking among candidate patterns. Then, we present a dual-level Monte-Carlo estimation method with a baseline algorithm for spatial mixture pattern detection. Finally, we propose both an exact algorithm and a distribution-inspired sequence-reduction heuristic to accelerate the baseline approach. Experiment results with both synthetic and real-world data show that the proposed approaches can detect mixture patterns with high accuracy, and the acceleration methods can greatly reduce computational cost while maintaining high solution quality.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Discovering Spatial Mixture Patterns of Interest\",\"authors\":\"Yiqun Xie, Han Bao, Y. Li, S. Shekhar\",\"doi\":\"10.1145/3397536.3422217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a collection of N geo-located point samples of k types, we aim to detect spatial mixture patterns of interest, which are sub-regions of the study area that have significantly high or low mixture of points of different types. Spatial mixture patterns have important applications in many societal domains, including resilience of smart cities and communities, biodiversity, equity, business intelligence, etc. The problem is challenging because ranking and selection of candidate patterns can be highly susceptible to the effect of natural randomness, and real-world data often consists of various mixture patterns. In related work, the multi-nomial scan statistic does not support identification of high or low mixture due to its \\\"directionless\\\" nature and high sensitivity to the composition of mixture patterns in data. While species richness indices in biodiversity research allow specification of directions, the measures are very sensitive to spatial randomness effects. To bridge the gap, we first propose a spatial mixture index to provide robust ranking among candidate patterns. Then, we present a dual-level Monte-Carlo estimation method with a baseline algorithm for spatial mixture pattern detection. Finally, we propose both an exact algorithm and a distribution-inspired sequence-reduction heuristic to accelerate the baseline approach. Experiment results with both synthetic and real-world data show that the proposed approaches can detect mixture patterns with high accuracy, and the acceleration methods can greatly reduce computational cost while maintaining high solution quality.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3422217\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

给定k种类型的N个地理定位点样本的集合,我们的目标是检测感兴趣的空间混合模式,这些模式是研究区域中具有不同类型点的显著高或低混合的子区域。空间混合模式在许多社会领域都有重要的应用,包括智慧城市和社区的弹性、生物多样性、公平、商业智能等。这个问题具有挑战性,因为候选模式的排序和选择可能非常容易受到自然随机性的影响,而现实世界的数据通常由各种混合模式组成。在相关工作中,多项扫描统计量由于其“无方向性”和对数据中混合模式组成的高灵敏度,不支持高或低混合的识别。生物多样性研究中的物种丰富度指标具有方向性,但对空间随机效应非常敏感。为了弥补这一差距,我们首先提出了一个空间混合指数来提供候选模式之间的稳健排名。然后,我们提出了一种基于基线算法的双水平蒙特卡罗估计方法用于空间混合模式检测。最后,我们提出了一种精确算法和一种分布启发的序列约简启发式算法来加速基线方法。合成数据和实际数据的实验结果表明,该方法能够以较高的精度检测混合模式,加速方法在保持高解质量的同时大大降低了计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering Spatial Mixture Patterns of Interest
Given a collection of N geo-located point samples of k types, we aim to detect spatial mixture patterns of interest, which are sub-regions of the study area that have significantly high or low mixture of points of different types. Spatial mixture patterns have important applications in many societal domains, including resilience of smart cities and communities, biodiversity, equity, business intelligence, etc. The problem is challenging because ranking and selection of candidate patterns can be highly susceptible to the effect of natural randomness, and real-world data often consists of various mixture patterns. In related work, the multi-nomial scan statistic does not support identification of high or low mixture due to its "directionless" nature and high sensitivity to the composition of mixture patterns in data. While species richness indices in biodiversity research allow specification of directions, the measures are very sensitive to spatial randomness effects. To bridge the gap, we first propose a spatial mixture index to provide robust ranking among candidate patterns. Then, we present a dual-level Monte-Carlo estimation method with a baseline algorithm for spatial mixture pattern detection. Finally, we propose both an exact algorithm and a distribution-inspired sequence-reduction heuristic to accelerate the baseline approach. Experiment results with both synthetic and real-world data show that the proposed approaches can detect mixture patterns with high accuracy, and the acceleration methods can greatly reduce computational cost while maintaining high solution quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1