{"title":"低分辨率人脸识别的线性判别分析","authors":"S. Yeom","doi":"10.1109/FGCNS.2008.59","DOIUrl":null,"url":null,"abstract":"This invited paper discusses low resolution face recognition using photon-counting linear discriminant analysis (LDA). The photon-counting LDA asymptotically realizes the Fisher criterion without dimensionality reduction. Linear boundaries are determined in high dimensional space to classify unknown objects. It will be shown that the proposed method provides better results than eigen face and Fisher face in terms of accuracy and false alarm rates.","PeriodicalId":370780,"journal":{"name":"2008 Second International Conference on Future Generation Communication and Networking Symposia","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Linear Discriminant Analysis for Low Resolution Face Recognition\",\"authors\":\"S. Yeom\",\"doi\":\"10.1109/FGCNS.2008.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This invited paper discusses low resolution face recognition using photon-counting linear discriminant analysis (LDA). The photon-counting LDA asymptotically realizes the Fisher criterion without dimensionality reduction. Linear boundaries are determined in high dimensional space to classify unknown objects. It will be shown that the proposed method provides better results than eigen face and Fisher face in terms of accuracy and false alarm rates.\",\"PeriodicalId\":370780,\"journal\":{\"name\":\"2008 Second International Conference on Future Generation Communication and Networking Symposia\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Second International Conference on Future Generation Communication and Networking Symposia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FGCNS.2008.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Second International Conference on Future Generation Communication and Networking Symposia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FGCNS.2008.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文讨论了光子计数线性判别分析(LDA)在低分辨率人脸识别中的应用。光子计数LDA在不降维的情况下渐近地实现Fisher准则。在高维空间中确定线性边界,对未知物体进行分类。结果表明,该方法在准确率和虚警率方面都优于特征脸和费雪脸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Linear Discriminant Analysis for Low Resolution Face Recognition
This invited paper discusses low resolution face recognition using photon-counting linear discriminant analysis (LDA). The photon-counting LDA asymptotically realizes the Fisher criterion without dimensionality reduction. Linear boundaries are determined in high dimensional space to classify unknown objects. It will be shown that the proposed method provides better results than eigen face and Fisher face in terms of accuracy and false alarm rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Event Recognition for Visual Surveillance Systems Lossless Information Hiding Scheme Based on Neighboring Correlation HSV Color Space and Face Detection Based Objectionable Image Detecting User Interface Concurrency in Web Service Client Systems Visuo-Motor Coordination in Bipedal Humanoid Robot Walking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1