结合权重属性在检测网络垃圾邮件

A. G. K. Leng, K. P. Ravi, Ashutosh Kumar Singh
{"title":"结合权重属性在检测网络垃圾邮件","authors":"A. G. K. Leng, K. P. Ravi, Ashutosh Kumar Singh","doi":"10.1109/URKE.2012.6319540","DOIUrl":null,"url":null,"abstract":"This paper focus on incorporating weight properties to enhance Web spam detection algorithms. Our proposed methodology adds this feature into Anti-TrustRank algorithm and call it weighted Anti-TrustRank algorithm to show the effectiveness of the weight properties using a new metric. Experiments are conducted on WEBSPAM-UK2006, a public Web spam dataset and have shown that weighted Anti-TrustRank significantly outperforms Anti-TrustRank algorithm up to 37.85%.","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Incorporating weight properties in detection of web spam\",\"authors\":\"A. G. K. Leng, K. P. Ravi, Ashutosh Kumar Singh\",\"doi\":\"10.1109/URKE.2012.6319540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focus on incorporating weight properties to enhance Web spam detection algorithms. Our proposed methodology adds this feature into Anti-TrustRank algorithm and call it weighted Anti-TrustRank algorithm to show the effectiveness of the weight properties using a new metric. Experiments are conducted on WEBSPAM-UK2006, a public Web spam dataset and have shown that weighted Anti-TrustRank significantly outperforms Anti-TrustRank algorithm up to 37.85%.\",\"PeriodicalId\":277189,\"journal\":{\"name\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URKE.2012.6319540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的重点是结合权重属性来增强Web垃圾邮件检测算法。我们提出的方法将这一特征添加到Anti-TrustRank算法中,并将其称为加权Anti-TrustRank算法,以使用新的度量来显示权重属性的有效性。在WEBSPAM-UK2006(一个公开的Web垃圾邮件数据集)上进行的实验表明,加权Anti-TrustRank算法的性能显著优于Anti-TrustRank算法,达到37.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporating weight properties in detection of web spam
This paper focus on incorporating weight properties to enhance Web spam detection algorithms. Our proposed methodology adds this feature into Anti-TrustRank algorithm and call it weighted Anti-TrustRank algorithm to show the effectiveness of the weight properties using a new metric. Experiments are conducted on WEBSPAM-UK2006, a public Web spam dataset and have shown that weighted Anti-TrustRank significantly outperforms Anti-TrustRank algorithm up to 37.85%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driving system stability analysis and improving of IPMSM Bayesian network structure learning for discrete and continuous variables Development of genetic algorithm on multi-vendor integrated procurement-production system under shared transportation and just-in-time delivery system Inter-transaction association rule mining in the Indonesia stock exchange market Extreme graphs with given order and edge-neighbor-scattering number
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1