{"title":"结合权重属性在检测网络垃圾邮件","authors":"A. G. K. Leng, K. P. Ravi, Ashutosh Kumar Singh","doi":"10.1109/URKE.2012.6319540","DOIUrl":null,"url":null,"abstract":"This paper focus on incorporating weight properties to enhance Web spam detection algorithms. Our proposed methodology adds this feature into Anti-TrustRank algorithm and call it weighted Anti-TrustRank algorithm to show the effectiveness of the weight properties using a new metric. Experiments are conducted on WEBSPAM-UK2006, a public Web spam dataset and have shown that weighted Anti-TrustRank significantly outperforms Anti-TrustRank algorithm up to 37.85%.","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Incorporating weight properties in detection of web spam\",\"authors\":\"A. G. K. Leng, K. P. Ravi, Ashutosh Kumar Singh\",\"doi\":\"10.1109/URKE.2012.6319540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focus on incorporating weight properties to enhance Web spam detection algorithms. Our proposed methodology adds this feature into Anti-TrustRank algorithm and call it weighted Anti-TrustRank algorithm to show the effectiveness of the weight properties using a new metric. Experiments are conducted on WEBSPAM-UK2006, a public Web spam dataset and have shown that weighted Anti-TrustRank significantly outperforms Anti-TrustRank algorithm up to 37.85%.\",\"PeriodicalId\":277189,\"journal\":{\"name\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/URKE.2012.6319540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Incorporating weight properties in detection of web spam
This paper focus on incorporating weight properties to enhance Web spam detection algorithms. Our proposed methodology adds this feature into Anti-TrustRank algorithm and call it weighted Anti-TrustRank algorithm to show the effectiveness of the weight properties using a new metric. Experiments are conducted on WEBSPAM-UK2006, a public Web spam dataset and have shown that weighted Anti-TrustRank significantly outperforms Anti-TrustRank algorithm up to 37.85%.