学习用解决教育和研究问题的方法建立机械系统动力学模型

P. Belonozhko, Yury V. Berchun
{"title":"学习用解决教育和研究问题的方法建立机械系统动力学模型","authors":"P. Belonozhko, Yury V. Berchun","doi":"10.1051/itmconf/20203504003","DOIUrl":null,"url":null,"abstract":"The methodological features of using software systems for modeling the dynamics of mechanical systems for solving educational research problems are considered. The traditionally established approach to studying the foundations of modeling the dynamics of technical systems is largely based on mastering the corresponding mathematical tools. With regard to modeling the dynamics of systems of solids, the mentioned approach involves, first of all, the development of skills in the preparation of ordinary differential equations (ODEs). At the same time, the formation of a mechanical calculation scheme as an «object of application of mathematics» becomes a natural stage of mathematical research, and the selection of simplifying assumptions that allow one or another idealization to correspond to a real object is carried out consciously taking into account the desire for certain internal properties of the mathematical model (for example, type and order of the ODE system). An important feature of modern systems for modeling the dynamics of solid’s systems is the ability to describe the object under study directly in terms of the subject area. This feature provides an increase in the effectiveness of modeling in solving design and engineering and scientific research problems and allows you to save a qualified specialist from a laborious routine. At the same time, as experience shows, in the process of solving educational and research problems, due to the mentioned features of modern software, students have certain difficulties in mastering the fundamental conceptual base of the corresponding discipline (physics, electrical engineering, theoretical mechanics, theory of automatic control, fundamentals of computer aided design). The article gives an example of an educational research task focused on overcoming these difficulties.","PeriodicalId":433898,"journal":{"name":"ITM Web of Conferences","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning to Model the Dynamics of Mechanical Systems with the Method of Solving Educational and Research Problems\",\"authors\":\"P. Belonozhko, Yury V. Berchun\",\"doi\":\"10.1051/itmconf/20203504003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The methodological features of using software systems for modeling the dynamics of mechanical systems for solving educational research problems are considered. The traditionally established approach to studying the foundations of modeling the dynamics of technical systems is largely based on mastering the corresponding mathematical tools. With regard to modeling the dynamics of systems of solids, the mentioned approach involves, first of all, the development of skills in the preparation of ordinary differential equations (ODEs). At the same time, the formation of a mechanical calculation scheme as an «object of application of mathematics» becomes a natural stage of mathematical research, and the selection of simplifying assumptions that allow one or another idealization to correspond to a real object is carried out consciously taking into account the desire for certain internal properties of the mathematical model (for example, type and order of the ODE system). An important feature of modern systems for modeling the dynamics of solid’s systems is the ability to describe the object under study directly in terms of the subject area. This feature provides an increase in the effectiveness of modeling in solving design and engineering and scientific research problems and allows you to save a qualified specialist from a laborious routine. At the same time, as experience shows, in the process of solving educational and research problems, due to the mentioned features of modern software, students have certain difficulties in mastering the fundamental conceptual base of the corresponding discipline (physics, electrical engineering, theoretical mechanics, theory of automatic control, fundamentals of computer aided design). The article gives an example of an educational research task focused on overcoming these difficulties.\",\"PeriodicalId\":433898,\"journal\":{\"name\":\"ITM Web of Conferences\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ITM Web of Conferences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/itmconf/20203504003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITM Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/itmconf/20203504003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用软件系统对机械系统的动力学进行建模以解决教育研究问题的方法学特征被考虑。研究技术系统动力学建模基础的传统方法主要基于掌握相应的数学工具。关于固体系统的动力学建模,上述方法首先涉及到常微分方程(ode)制备技能的发展。与此同时,作为“数学应用对象”的机械计算方案的形成成为数学研究的一个自然阶段,选择简化假设,允许一个或另一个理想化对应于真实对象,是有意识地考虑到对数学模型某些内部属性的渴望(例如,ODE系统的类型和顺序)。现代系统对固体系统动力学建模的一个重要特征是能够直接根据主题领域描述所研究的对象。该功能提高了建模在解决设计、工程和科学研究问题方面的有效性,并允许您从繁重的例行工作中节省合格的专家。同时,经验表明,在解决教育和研究问题的过程中,由于现代软件的上述特点,学生在掌握相应学科(物理学、电气工程、理论力学、自动控制理论、计算机辅助设计基础)的基本概念基础方面存在一定的困难。本文给出了一个教育研究任务的例子,重点是克服这些困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning to Model the Dynamics of Mechanical Systems with the Method of Solving Educational and Research Problems
The methodological features of using software systems for modeling the dynamics of mechanical systems for solving educational research problems are considered. The traditionally established approach to studying the foundations of modeling the dynamics of technical systems is largely based on mastering the corresponding mathematical tools. With regard to modeling the dynamics of systems of solids, the mentioned approach involves, first of all, the development of skills in the preparation of ordinary differential equations (ODEs). At the same time, the formation of a mechanical calculation scheme as an «object of application of mathematics» becomes a natural stage of mathematical research, and the selection of simplifying assumptions that allow one or another idealization to correspond to a real object is carried out consciously taking into account the desire for certain internal properties of the mathematical model (for example, type and order of the ODE system). An important feature of modern systems for modeling the dynamics of solid’s systems is the ability to describe the object under study directly in terms of the subject area. This feature provides an increase in the effectiveness of modeling in solving design and engineering and scientific research problems and allows you to save a qualified specialist from a laborious routine. At the same time, as experience shows, in the process of solving educational and research problems, due to the mentioned features of modern software, students have certain difficulties in mastering the fundamental conceptual base of the corresponding discipline (physics, electrical engineering, theoretical mechanics, theory of automatic control, fundamentals of computer aided design). The article gives an example of an educational research task focused on overcoming these difficulties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stock Price Prediction using Facebook Prophet Drowsiness Detection using EEG signals and Machine Learning Algorithms Aging mechanisms analysis of Graphite/LiNi0.80Co0.15Al0.05O2 lithium-ion batteries among the whole life cycle at different temperatures Android-based object recognition application for visually impaired Conception d’une séquence d’introduction dynamique du produit scalaire via une approche constructiviste intégrant la mécanique et les TIC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1