{"title":"用随机游走模型回答复杂问题","authors":"S. Harabagiu, V. Lacatusu, Andrew Hickl","doi":"10.1145/1148170.1148211","DOIUrl":null,"url":null,"abstract":"We present a novel framework for answering complex questions that relies on question decomposition. Complex questions are decomposed by a procedure that operates on a Markov chain, by following a random walk on a bipartite graph of relations established between concepts related to the topic of a complex question and subquestions derived from topic-relevant passages that manifest these relations. Decomposed questions discovered during this random walk are then submitted to a state-of-the-art Question Answering (Q/A) system in order to retrieve a set of passages that can later be merged into a comprehensive answer by a Multi-Document Summarization (MDS) system. In our evaluations, we show that access to the decompositions generated using this method can significantly enhance the relevance and comprehensiveness of summary-length answers to complex questions.","PeriodicalId":433366,"journal":{"name":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"Answering complex questions with random walk models\",\"authors\":\"S. Harabagiu, V. Lacatusu, Andrew Hickl\",\"doi\":\"10.1145/1148170.1148211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a novel framework for answering complex questions that relies on question decomposition. Complex questions are decomposed by a procedure that operates on a Markov chain, by following a random walk on a bipartite graph of relations established between concepts related to the topic of a complex question and subquestions derived from topic-relevant passages that manifest these relations. Decomposed questions discovered during this random walk are then submitted to a state-of-the-art Question Answering (Q/A) system in order to retrieve a set of passages that can later be merged into a comprehensive answer by a Multi-Document Summarization (MDS) system. In our evaluations, we show that access to the decompositions generated using this method can significantly enhance the relevance and comprehensiveness of summary-length answers to complex questions.\",\"PeriodicalId\":433366,\"journal\":{\"name\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1148170.1148211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1148170.1148211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Answering complex questions with random walk models
We present a novel framework for answering complex questions that relies on question decomposition. Complex questions are decomposed by a procedure that operates on a Markov chain, by following a random walk on a bipartite graph of relations established between concepts related to the topic of a complex question and subquestions derived from topic-relevant passages that manifest these relations. Decomposed questions discovered during this random walk are then submitted to a state-of-the-art Question Answering (Q/A) system in order to retrieve a set of passages that can later be merged into a comprehensive answer by a Multi-Document Summarization (MDS) system. In our evaluations, we show that access to the decompositions generated using this method can significantly enhance the relevance and comprehensiveness of summary-length answers to complex questions.