Anjali Yadav, M. Dutta, C. Travieso-González, J. B. Alonso
{"title":"基于傅立叶变换的心音记录正常与异常PCG自动分类","authors":"Anjali Yadav, M. Dutta, C. Travieso-González, J. B. Alonso","doi":"10.1109/IWOBI.2018.8464131","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases are very common these days and there arises a need for regular diagnosis of humans. Phonocardiogram is an effective diagnostic tool for analysing the heart sound. It helps in providing better information regarding clinical condition of the heart. This paper proposes an algorithmic method for differentiating a normal heart sound from an abnormal one using the PCG sound data. Cepstrum analysis has been performed on both types of signals and features are extracted from the heart sound. The extracted features are trained and tested with the help of a support vector machine classifier. The proposed method has achieved an accuracy of 95% in correctly classifying a heart sound PCG signal as normal and abnormal.","PeriodicalId":127078,"journal":{"name":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Automatic Classification of Normal and Abnormal PCG Recording Heart Sound Recording Using Fourier Transform\",\"authors\":\"Anjali Yadav, M. Dutta, C. Travieso-González, J. B. Alonso\",\"doi\":\"10.1109/IWOBI.2018.8464131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardiovascular diseases are very common these days and there arises a need for regular diagnosis of humans. Phonocardiogram is an effective diagnostic tool for analysing the heart sound. It helps in providing better information regarding clinical condition of the heart. This paper proposes an algorithmic method for differentiating a normal heart sound from an abnormal one using the PCG sound data. Cepstrum analysis has been performed on both types of signals and features are extracted from the heart sound. The extracted features are trained and tested with the help of a support vector machine classifier. The proposed method has achieved an accuracy of 95% in correctly classifying a heart sound PCG signal as normal and abnormal.\",\"PeriodicalId\":127078,\"journal\":{\"name\":\"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWOBI.2018.8464131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWOBI.2018.8464131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automatic Classification of Normal and Abnormal PCG Recording Heart Sound Recording Using Fourier Transform
Cardiovascular diseases are very common these days and there arises a need for regular diagnosis of humans. Phonocardiogram is an effective diagnostic tool for analysing the heart sound. It helps in providing better information regarding clinical condition of the heart. This paper proposes an algorithmic method for differentiating a normal heart sound from an abnormal one using the PCG sound data. Cepstrum analysis has been performed on both types of signals and features are extracted from the heart sound. The extracted features are trained and tested with the help of a support vector machine classifier. The proposed method has achieved an accuracy of 95% in correctly classifying a heart sound PCG signal as normal and abnormal.