多周期超材料的光谱特征

A. Girich, A. Kharchenko, S. Tarapov
{"title":"多周期超材料的光谱特征","authors":"A. Girich, A. Kharchenko, S. Tarapov","doi":"10.1109/CAOL46282.2019.9019522","DOIUrl":null,"url":null,"abstract":"We numerically investigate the spectral properties of multi-periodic metamaterials of various configurations (the planar double-periodic photonic crystal and the bulk double-periodic magnetophotonic crystal) in the frequency range 15-45 GHz. In the first part of this paper we describe investigation of structure of the planar double periodic photonic crystal (PDPPC) which consists of two planar photonic crystals with large and small periods. A PDPPC unit cell consists of a series-connected narrow and wide segments of a microstrip transmission line. In the second part of this paper we will discuss results of investigation of a double-periodic magnetophotonic crystal (DPMPC) which consists of 3 unit cells. Each cell consists of periodically located 9 dielectric layers of quartz and teflon. On the border of the cell there is one layer of ferrite.We showed that both for a PDPPC and for a DPMPC in the transmission spectrum of these structures under study, a number of features arise: namely, narrow transmission peaks caused by the superposition of two spectra (with large and small periods) are observed in the stop bands of the spectrum. Such features may further allow the creation of a narrow-band filter for several frequencies for both planar structures and bulk ones.","PeriodicalId":308704,"journal":{"name":"2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spectral Features of a Multi-Periodical Metamaterials\",\"authors\":\"A. Girich, A. Kharchenko, S. Tarapov\",\"doi\":\"10.1109/CAOL46282.2019.9019522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We numerically investigate the spectral properties of multi-periodic metamaterials of various configurations (the planar double-periodic photonic crystal and the bulk double-periodic magnetophotonic crystal) in the frequency range 15-45 GHz. In the first part of this paper we describe investigation of structure of the planar double periodic photonic crystal (PDPPC) which consists of two planar photonic crystals with large and small periods. A PDPPC unit cell consists of a series-connected narrow and wide segments of a microstrip transmission line. In the second part of this paper we will discuss results of investigation of a double-periodic magnetophotonic crystal (DPMPC) which consists of 3 unit cells. Each cell consists of periodically located 9 dielectric layers of quartz and teflon. On the border of the cell there is one layer of ferrite.We showed that both for a PDPPC and for a DPMPC in the transmission spectrum of these structures under study, a number of features arise: namely, narrow transmission peaks caused by the superposition of two spectra (with large and small periods) are observed in the stop bands of the spectrum. Such features may further allow the creation of a narrow-band filter for several frequencies for both planar structures and bulk ones.\",\"PeriodicalId\":308704,\"journal\":{\"name\":\"2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAOL46282.2019.9019522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th International Conference on Advanced Optoelectronics and Lasers (CAOL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAOL46282.2019.9019522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文用数值方法研究了不同结构的多周期超材料(平面双周期光子晶体和块状双周期磁光子晶体)在15-45 GHz频率范围内的光谱特性。本文第一部分研究了由大周期和小周期两个平面光子晶体组成的平面双周期光子晶体的结构。PDPPC单元由微带传输线的窄段和宽段串联而成。本文第二部分讨论了由3个单元晶组成的双周期磁光子晶体(DPMPC)的研究结果。每个电池由周期性定位的9层石英和聚四氟乙烯介电层组成。在胞体的边缘有一层铁氧体。我们发现,在这些结构的透射光谱中,PDPPC和DPMPC都出现了一些特征:即在光谱的停止带中观察到由两个光谱(大周期和小周期)叠加引起的窄透射峰。这样的特征可以进一步允许为平面结构和块状结构创建用于多个频率的窄带滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectral Features of a Multi-Periodical Metamaterials
We numerically investigate the spectral properties of multi-periodic metamaterials of various configurations (the planar double-periodic photonic crystal and the bulk double-periodic magnetophotonic crystal) in the frequency range 15-45 GHz. In the first part of this paper we describe investigation of structure of the planar double periodic photonic crystal (PDPPC) which consists of two planar photonic crystals with large and small periods. A PDPPC unit cell consists of a series-connected narrow and wide segments of a microstrip transmission line. In the second part of this paper we will discuss results of investigation of a double-periodic magnetophotonic crystal (DPMPC) which consists of 3 unit cells. Each cell consists of periodically located 9 dielectric layers of quartz and teflon. On the border of the cell there is one layer of ferrite.We showed that both for a PDPPC and for a DPMPC in the transmission spectrum of these structures under study, a number of features arise: namely, narrow transmission peaks caused by the superposition of two spectra (with large and small periods) are observed in the stop bands of the spectrum. Such features may further allow the creation of a narrow-band filter for several frequencies for both planar structures and bulk ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Local Laser Heating of Biological Tissue On validation of hydrodynamic model of selective laser melting with the effect of the evaporation Bistable Properties of Nonlinear Planar Metamaterials : (Invited) THz and IR detectors in applications : (Invited) A pulsed diode laser for tectonic aerosol lidar sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1