基于细胞神经网络的机械振动系统瞬态响应计算

P. Szolgay, G. Voros
{"title":"基于细胞神经网络的机械振动系统瞬态响应计算","authors":"P. Szolgay, G. Voros","doi":"10.1109/CNNA.1994.381659","DOIUrl":null,"url":null,"abstract":"Cellular neural networks (CNNs) paradigm is applied in the paper to compute the transient response of mechanical vibrating systems. Based on previous theoretical results on this field we would like to show (i) how the CNN templates can be generated automatically by a subroutine from the COSMOS/M finite element analysis system; (ii) how we assign to each degree of freedom two coupled CNN layers and how the templates are derived. Some interesting examples are shown and analyzed.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Transient response computation of a mechanical vibrating system using cellular neural networks\",\"authors\":\"P. Szolgay, G. Voros\",\"doi\":\"10.1109/CNNA.1994.381659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cellular neural networks (CNNs) paradigm is applied in the paper to compute the transient response of mechanical vibrating systems. Based on previous theoretical results on this field we would like to show (i) how the CNN templates can be generated automatically by a subroutine from the COSMOS/M finite element analysis system; (ii) how we assign to each degree of freedom two coupled CNN layers and how the templates are derived. Some interesting examples are shown and analyzed.<<ETX>>\",\"PeriodicalId\":248898,\"journal\":{\"name\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1994.381659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文采用细胞神经网络(cnn)范式来计算机械振动系统的瞬态响应。基于该领域先前的理论结果,我们想展示(i) CNN模板如何由COSMOS/M有限元分析系统的子程序自动生成;(ii)我们如何为每个自由度分配两个耦合的CNN层以及如何推导模板。文中列举并分析了一些有趣的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transient response computation of a mechanical vibrating system using cellular neural networks
Cellular neural networks (CNNs) paradigm is applied in the paper to compute the transient response of mechanical vibrating systems. Based on previous theoretical results on this field we would like to show (i) how the CNN templates can be generated automatically by a subroutine from the COSMOS/M finite element analysis system; (ii) how we assign to each degree of freedom two coupled CNN layers and how the templates are derived. Some interesting examples are shown and analyzed.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realisation of a digital cellular neural network for image processing Convergence and stability of the FSR CNN model A versatile CMOS building block for fully analogically-programmable VLSI cellular neural networks A fast, complex and efficient test implementation of the CNN Universal Machine Optoelectronic cellular neural networks based on amorphous silicon thin film technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1