欠定线性系统的灵敏度

Yunfeng Cai, Guanhua Fang, P. Li
{"title":"欠定线性系统的灵敏度","authors":"Yunfeng Cai, Guanhua Fang, P. Li","doi":"10.1109/ISIT50566.2022.9834364","DOIUrl":null,"url":null,"abstract":"This paper considers the sensitivity of the optimization problem minf(x) with the linear constraint Ax = b, where f is a general differentiable function quantifying sparsity, Ax=b is the under-determined linear system of equations, A ∈ℝn×p. Given small noises to A and b, we are able to show the difference between the perturbed solution and optimal solution. The new perturbation bound reveals the factors that affect the sensitivity of the optimal solution of the linear system. Different objective functions f’s lead to distinct perturbation bounds, whose magnitudes determine the robustness of the optimization problem. Our results shed a fresh insight in understanding the robustness of under-determined linear system.","PeriodicalId":348168,"journal":{"name":"2022 IEEE International Symposium on Information Theory (ISIT)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity of Under-Determined Linear System\",\"authors\":\"Yunfeng Cai, Guanhua Fang, P. Li\",\"doi\":\"10.1109/ISIT50566.2022.9834364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the sensitivity of the optimization problem minf(x) with the linear constraint Ax = b, where f is a general differentiable function quantifying sparsity, Ax=b is the under-determined linear system of equations, A ∈ℝn×p. Given small noises to A and b, we are able to show the difference between the perturbed solution and optimal solution. The new perturbation bound reveals the factors that affect the sensitivity of the optimal solution of the linear system. Different objective functions f’s lead to distinct perturbation bounds, whose magnitudes determine the robustness of the optimization problem. Our results shed a fresh insight in understanding the robustness of under-determined linear system.\",\"PeriodicalId\":348168,\"journal\":{\"name\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT50566.2022.9834364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT50566.2022.9834364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑具有线性约束Ax=b的minf(x)优化问题的敏感性,其中f是量化稀疏性的一般可微函数,Ax=b是欠定线性方程组,a∈∈∈n×p。给定A和b的小噪声,我们能够显示摄动解和最优解之间的差异。新的摄动界揭示了影响线性系统最优解灵敏度的因素。不同的目标函数f 's导致不同的扰动界,其大小决定了优化问题的鲁棒性。我们的结果为理解欠定线性系统的鲁棒性提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sensitivity of Under-Determined Linear System
This paper considers the sensitivity of the optimization problem minf(x) with the linear constraint Ax = b, where f is a general differentiable function quantifying sparsity, Ax=b is the under-determined linear system of equations, A ∈ℝn×p. Given small noises to A and b, we are able to show the difference between the perturbed solution and optimal solution. The new perturbation bound reveals the factors that affect the sensitivity of the optimal solution of the linear system. Different objective functions f’s lead to distinct perturbation bounds, whose magnitudes determine the robustness of the optimization problem. Our results shed a fresh insight in understanding the robustness of under-determined linear system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Low Rank column-wise Compressive Sensing Ternary Message Passing Decoding of RS-SPC Product Codes Understanding Deep Neural Networks Using Sliced Mutual Information Rate-Optimal Streaming Codes Over the Three-Node Decode-And-Forward Relay Network Unlimited Sampling via Generalized Thresholding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1