通过处理360°视频来检测城市空间中的行人空间行为

Ouyang Yu, Sheng-Ming Wang
{"title":"通过处理360°视频来检测城市空间中的行人空间行为","authors":"Ouyang Yu, Sheng-Ming Wang","doi":"10.1109/ICCE-Taiwan58799.2023.10226999","DOIUrl":null,"url":null,"abstract":"This study developed a framework based on deep learning algorithms for processing 360° videos for detecting pedestrian spatial behavior in urban spaces. Information divergence is determined through the sampling and conversion of spatiotemporal behavior data for pedestrian flow analysis. Traditional videos, such as those captured by one-way security cameras, cannot be used to fully analyze the flow of pedestrians in cities. Therefore, a 360° camera is used to capture panoramic videos of city spaces over time. Subsequently, deep learning algorithms are used to process the videos and obtain pedestrian trajectory data for analyzing their spatial behavior and interactions. The results of real-world implementation indicate that the proposed method and analytical framework can be used to detect pedestrians and collect data related to pedestrians’ spatial behavior. However, the sampling rate and application of pedestrians’ trajectory data must be explored in future studies.","PeriodicalId":112903,"journal":{"name":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Pedestrian Spatial Behavior in City Spaces by Processing 360° Videos\",\"authors\":\"Ouyang Yu, Sheng-Ming Wang\",\"doi\":\"10.1109/ICCE-Taiwan58799.2023.10226999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study developed a framework based on deep learning algorithms for processing 360° videos for detecting pedestrian spatial behavior in urban spaces. Information divergence is determined through the sampling and conversion of spatiotemporal behavior data for pedestrian flow analysis. Traditional videos, such as those captured by one-way security cameras, cannot be used to fully analyze the flow of pedestrians in cities. Therefore, a 360° camera is used to capture panoramic videos of city spaces over time. Subsequently, deep learning algorithms are used to process the videos and obtain pedestrian trajectory data for analyzing their spatial behavior and interactions. The results of real-world implementation indicate that the proposed method and analytical framework can be used to detect pedestrians and collect data related to pedestrians’ spatial behavior. However, the sampling rate and application of pedestrians’ trajectory data must be explored in future studies.\",\"PeriodicalId\":112903,\"journal\":{\"name\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan58799.2023.10226999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究开发了一个基于深度学习算法的框架,用于处理360°视频,以检测城市空间中的行人空间行为。通过对行人时空行为数据进行采样和转换,确定信息发散度。传统的视频,如单向安全摄像头拍摄的视频,无法用于全面分析城市中的行人流量。因此,我们使用了一个360°的摄像机来捕捉城市空间随时间变化的全景视频。随后,使用深度学习算法对视频进行处理,获得行人轨迹数据,用于分析其空间行为和相互作用。现实世界的实施结果表明,该方法和分析框架可以用于行人检测和收集与行人空间行为相关的数据。然而,行人轨迹数据的采样率和应用还有待于进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Pedestrian Spatial Behavior in City Spaces by Processing 360° Videos
This study developed a framework based on deep learning algorithms for processing 360° videos for detecting pedestrian spatial behavior in urban spaces. Information divergence is determined through the sampling and conversion of spatiotemporal behavior data for pedestrian flow analysis. Traditional videos, such as those captured by one-way security cameras, cannot be used to fully analyze the flow of pedestrians in cities. Therefore, a 360° camera is used to capture panoramic videos of city spaces over time. Subsequently, deep learning algorithms are used to process the videos and obtain pedestrian trajectory data for analyzing their spatial behavior and interactions. The results of real-world implementation indicate that the proposed method and analytical framework can be used to detect pedestrians and collect data related to pedestrians’ spatial behavior. However, the sampling rate and application of pedestrians’ trajectory data must be explored in future studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Developing a visual IoT environment analysis system to support self-directed learning of students Smallest Botnet Firewall Building Problem and a Girvan-Newman Algorithm-Based Heuristic Solution Parametric Optimization of WEDM Process for Machining ANSI Steel Using Soft-Computing Methods Development of a Transmissive LED Touch Display for Engineered Marble Sewage Treatment Interactive Learning Game Design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1