ENACCEF2预混氢气-空气爆燃实验的OpenFOAM模拟

J. Jaseliūnaitė, Mantas Povilaitis
{"title":"ENACCEF2预混氢气-空气爆燃实验的OpenFOAM模拟","authors":"J. Jaseliūnaitė, Mantas Povilaitis","doi":"10.1115/icone2020-16241","DOIUrl":null,"url":null,"abstract":"\n During a severe accident in a nuclear power plant, hydrogen would be generated due to the oxidation of metallic components in steam atmosphere. In the containment hydrogen would form a combustible mixture, posing a deflagration or even detonation risk threatening the integrity of the containment. In order to estimate possible loads generated by the hydrogen combustion, reliable numerical tools are needed to simulate the deflagration process. Recently, the French MITHYGENE project consortium and the European Technical Safety Organization Network (ETSON) organized a benchmark on hydrogen combustion to identify the current level of the computational tools in the area of hydrogen combustion simulation under a severe accident typical conditions. The benchmark was based on the experiments performed in the ENACCEF2 facility.\n This paper presents post-benchmark simulations of the selected ENACCEF2 facility premixed hydrogen combustion experiment. The presented simulations were performed using a custom-built turbulent combustion OpenFOAM solver based on the progress variable model.\n Turbulent flame acceleration phase in the acceleration tube was well predicted. Furthermore, the simulations were able to capture the interaction between the flame and shock wave which was generated by the turbulent deflagration flame and reflected at the end of the ENACCEF2 tube. The overall numerical results show good agreement with the qualitative and quantitative behavior of the velocity results and flame front propagation.","PeriodicalId":414088,"journal":{"name":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of ENACCEF2 Premixed Hydrogen-Air Mixture Deflagration Experiment Using OpenFOAM\",\"authors\":\"J. Jaseliūnaitė, Mantas Povilaitis\",\"doi\":\"10.1115/icone2020-16241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n During a severe accident in a nuclear power plant, hydrogen would be generated due to the oxidation of metallic components in steam atmosphere. In the containment hydrogen would form a combustible mixture, posing a deflagration or even detonation risk threatening the integrity of the containment. In order to estimate possible loads generated by the hydrogen combustion, reliable numerical tools are needed to simulate the deflagration process. Recently, the French MITHYGENE project consortium and the European Technical Safety Organization Network (ETSON) organized a benchmark on hydrogen combustion to identify the current level of the computational tools in the area of hydrogen combustion simulation under a severe accident typical conditions. The benchmark was based on the experiments performed in the ENACCEF2 facility.\\n This paper presents post-benchmark simulations of the selected ENACCEF2 facility premixed hydrogen combustion experiment. The presented simulations were performed using a custom-built turbulent combustion OpenFOAM solver based on the progress variable model.\\n Turbulent flame acceleration phase in the acceleration tube was well predicted. Furthermore, the simulations were able to capture the interaction between the flame and shock wave which was generated by the turbulent deflagration flame and reflected at the end of the ENACCEF2 tube. The overall numerical results show good agreement with the qualitative and quantitative behavior of the velocity results and flame front propagation.\",\"PeriodicalId\":414088,\"journal\":{\"name\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/icone2020-16241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone2020-16241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在核电站发生严重事故时,由于蒸汽大气中的金属成分氧化会产生氢气。在安全壳内,氢气将形成可燃混合物,造成爆燃甚至引爆的危险,威胁安全壳的完整性。为了估计氢气燃烧可能产生的载荷,需要可靠的数值工具来模拟爆燃过程。最近,法国MITHYGENE项目联盟和欧洲技术安全组织网络(ETSON)组织了一个关于氢燃烧的基准测试,以确定在严重事故典型条件下氢燃烧模拟领域的计算工具的当前水平。基准测试基于在ENACCEF2设施中进行的实验。本文介绍了选定的ENACCEF2设备预混氢燃烧实验的基准后模拟。采用基于进度变量模型的定制湍流燃烧OpenFOAM求解器进行仿真。对加速管内的湍流火焰加速阶段进行了较好的预测。此外,模拟还能够捕捉到湍流爆燃火焰产生的火焰与激波之间的相互作用,并在ENACCEF2管的末端反射。整体数值结果与速度结果和火焰前缘传播的定性和定量行为吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simulation of ENACCEF2 Premixed Hydrogen-Air Mixture Deflagration Experiment Using OpenFOAM
During a severe accident in a nuclear power plant, hydrogen would be generated due to the oxidation of metallic components in steam atmosphere. In the containment hydrogen would form a combustible mixture, posing a deflagration or even detonation risk threatening the integrity of the containment. In order to estimate possible loads generated by the hydrogen combustion, reliable numerical tools are needed to simulate the deflagration process. Recently, the French MITHYGENE project consortium and the European Technical Safety Organization Network (ETSON) organized a benchmark on hydrogen combustion to identify the current level of the computational tools in the area of hydrogen combustion simulation under a severe accident typical conditions. The benchmark was based on the experiments performed in the ENACCEF2 facility. This paper presents post-benchmark simulations of the selected ENACCEF2 facility premixed hydrogen combustion experiment. The presented simulations were performed using a custom-built turbulent combustion OpenFOAM solver based on the progress variable model. Turbulent flame acceleration phase in the acceleration tube was well predicted. Furthermore, the simulations were able to capture the interaction between the flame and shock wave which was generated by the turbulent deflagration flame and reflected at the end of the ENACCEF2 tube. The overall numerical results show good agreement with the qualitative and quantitative behavior of the velocity results and flame front propagation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparative Study of Constrained and Unconstrained Melting Inside a Sphere Study on Seismic Isolation and Hi-Frequency Vibration Isolation Technology for Equipment in Nuclear Power Plant Using Aero Floating Technique Experimental Study of the Processes of Gas-Steam Pressurizer Insurge Transients Study on Scattering Correction of the 60Co Gantry-Movable Dual-Projection Digital Radiography Inspection System An Experimental Study of Two-Phase Flow in a Tight Lattice Using Wire-Mesh Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1