J. J. Acevedo, Á. Castaño, J. L. Andrade-Pineda, A. Ollero
{"title":"基于四维网格的大规模多无人机场景冲突检测方法","authors":"J. J. Acevedo, Á. Castaño, J. L. Andrade-Pineda, A. Ollero","doi":"10.1109/REDUAS47371.2019.8999724","DOIUrl":null,"url":null,"abstract":"This paper proposes an algorithm to detect conflicts among UAVs from a strategic point of view. The method is based on the representation of the airspace as a 4D grid of cells. Given a set of UAVs with their scheduled 4D trajectories (their flight plans), the whole scenario is discretized as a 4D grid and the problem is solved by filling the appropriate cell for each way-point from the trajectories and checking the neighboring cells. The proposed method is tested and compared against a traditional algorithm getting a significantly better performance. The proposed method also scales very well with increasing number of UAVs and way-points per trajectory.","PeriodicalId":351115,"journal":{"name":"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A 4D grid based approach for efficient conflict detection in large-scale multi-UAV scenarios\",\"authors\":\"J. J. Acevedo, Á. Castaño, J. L. Andrade-Pineda, A. Ollero\",\"doi\":\"10.1109/REDUAS47371.2019.8999724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an algorithm to detect conflicts among UAVs from a strategic point of view. The method is based on the representation of the airspace as a 4D grid of cells. Given a set of UAVs with their scheduled 4D trajectories (their flight plans), the whole scenario is discretized as a 4D grid and the problem is solved by filling the appropriate cell for each way-point from the trajectories and checking the neighboring cells. The proposed method is tested and compared against a traditional algorithm getting a significantly better performance. The proposed method also scales very well with increasing number of UAVs and way-points per trajectory.\",\"PeriodicalId\":351115,\"journal\":{\"name\":\"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/REDUAS47371.2019.8999724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REDUAS47371.2019.8999724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 4D grid based approach for efficient conflict detection in large-scale multi-UAV scenarios
This paper proposes an algorithm to detect conflicts among UAVs from a strategic point of view. The method is based on the representation of the airspace as a 4D grid of cells. Given a set of UAVs with their scheduled 4D trajectories (their flight plans), the whole scenario is discretized as a 4D grid and the problem is solved by filling the appropriate cell for each way-point from the trajectories and checking the neighboring cells. The proposed method is tested and compared against a traditional algorithm getting a significantly better performance. The proposed method also scales very well with increasing number of UAVs and way-points per trajectory.