J. Martin, A. D. de Ferron, T. Reess, R. Ruscassié, F. Rey-bethbeder
{"title":"水中电晕放电实验及向亚音速放电的过渡","authors":"J. Martin, A. D. de Ferron, T. Reess, R. Ruscassié, F. Rey-bethbeder","doi":"10.1109/ICDL.2011.6015410","DOIUrl":null,"url":null,"abstract":"This paper discusses the influence of the discharge current on the compressive shock waves generated by supersonic and subsonic discharges in water gap. The two different ways leading to dielectric breakdown in a water gap will be investigated. The transition phase between the two breakdown modes depends on the electric field and the electrical energy switched. The shock waves associated to breakdowns in water gap will be studied. Whatever the water breakdown mode will be, the peak pressure linearly depends from the peak current. For a constant peak current, the peak pressure value increases with increasing gap length. Moreover, the electro-acoustic efficiency is better using a supersonic discharge.","PeriodicalId":364451,"journal":{"name":"2011 IEEE International Conference on Dielectric Liquids","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corona discharges experiments in water and transition to subsonic discharges\",\"authors\":\"J. Martin, A. D. de Ferron, T. Reess, R. Ruscassié, F. Rey-bethbeder\",\"doi\":\"10.1109/ICDL.2011.6015410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the influence of the discharge current on the compressive shock waves generated by supersonic and subsonic discharges in water gap. The two different ways leading to dielectric breakdown in a water gap will be investigated. The transition phase between the two breakdown modes depends on the electric field and the electrical energy switched. The shock waves associated to breakdowns in water gap will be studied. Whatever the water breakdown mode will be, the peak pressure linearly depends from the peak current. For a constant peak current, the peak pressure value increases with increasing gap length. Moreover, the electro-acoustic efficiency is better using a supersonic discharge.\",\"PeriodicalId\":364451,\"journal\":{\"name\":\"2011 IEEE International Conference on Dielectric Liquids\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Dielectric Liquids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDL.2011.6015410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Dielectric Liquids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDL.2011.6015410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Corona discharges experiments in water and transition to subsonic discharges
This paper discusses the influence of the discharge current on the compressive shock waves generated by supersonic and subsonic discharges in water gap. The two different ways leading to dielectric breakdown in a water gap will be investigated. The transition phase between the two breakdown modes depends on the electric field and the electrical energy switched. The shock waves associated to breakdowns in water gap will be studied. Whatever the water breakdown mode will be, the peak pressure linearly depends from the peak current. For a constant peak current, the peak pressure value increases with increasing gap length. Moreover, the electro-acoustic efficiency is better using a supersonic discharge.