{"title":"PM-AM相关测量与分析","authors":"D. Howe, A. Hati, C. Nelson, D. Lirette","doi":"10.1109/FCS.2012.6243729","DOIUrl":null,"url":null,"abstract":"We measure and analyze effects of nonlinear mixing of phase-noise modulation (PM) and amplitude-noise modulation (AM) in an oscillating signal by real-time correlations measured in the cross power spectral density (CPSD). We outline sensitive measurements of PM-AM correlation coefficients by means of a time-averaged CPSD measurement technique. Separate but simultaneous PM and AM measurements using a two-channel cross-correlation spectrum analyzer, quantifies the relevant effects of intermodulation mixing with excellent sensitivity compared to traditional 3IM measurements and the scatter-plot correlation technique. Time-averaged cross-spectrum measurements provide good estimates of correlation coefficients as a function of Fourier frequency (f). We use normalized PM-AM CPSD measurements of a 645 MHz quartz-MEMs oscillator as an example and find that 1/f PM-AM CPSD is exactly correlated, even for very widely differing levels of PM and AM noise, in which individual PSDs of PM and AM differ by >;40 dB (or, greater than a factor of 10,000). We also verify that white-PM noise has uncorrelated PM-AM CPSD.","PeriodicalId":256670,"journal":{"name":"2012 IEEE International Frequency Control Symposium Proceedings","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"PM-AM correlation measurements and analysis\",\"authors\":\"D. Howe, A. Hati, C. Nelson, D. Lirette\",\"doi\":\"10.1109/FCS.2012.6243729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We measure and analyze effects of nonlinear mixing of phase-noise modulation (PM) and amplitude-noise modulation (AM) in an oscillating signal by real-time correlations measured in the cross power spectral density (CPSD). We outline sensitive measurements of PM-AM correlation coefficients by means of a time-averaged CPSD measurement technique. Separate but simultaneous PM and AM measurements using a two-channel cross-correlation spectrum analyzer, quantifies the relevant effects of intermodulation mixing with excellent sensitivity compared to traditional 3IM measurements and the scatter-plot correlation technique. Time-averaged cross-spectrum measurements provide good estimates of correlation coefficients as a function of Fourier frequency (f). We use normalized PM-AM CPSD measurements of a 645 MHz quartz-MEMs oscillator as an example and find that 1/f PM-AM CPSD is exactly correlated, even for very widely differing levels of PM and AM noise, in which individual PSDs of PM and AM differ by >;40 dB (or, greater than a factor of 10,000). We also verify that white-PM noise has uncorrelated PM-AM CPSD.\",\"PeriodicalId\":256670,\"journal\":{\"name\":\"2012 IEEE International Frequency Control Symposium Proceedings\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Frequency Control Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCS.2012.6243729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Frequency Control Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCS.2012.6243729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We measure and analyze effects of nonlinear mixing of phase-noise modulation (PM) and amplitude-noise modulation (AM) in an oscillating signal by real-time correlations measured in the cross power spectral density (CPSD). We outline sensitive measurements of PM-AM correlation coefficients by means of a time-averaged CPSD measurement technique. Separate but simultaneous PM and AM measurements using a two-channel cross-correlation spectrum analyzer, quantifies the relevant effects of intermodulation mixing with excellent sensitivity compared to traditional 3IM measurements and the scatter-plot correlation technique. Time-averaged cross-spectrum measurements provide good estimates of correlation coefficients as a function of Fourier frequency (f). We use normalized PM-AM CPSD measurements of a 645 MHz quartz-MEMs oscillator as an example and find that 1/f PM-AM CPSD is exactly correlated, even for very widely differing levels of PM and AM noise, in which individual PSDs of PM and AM differ by >;40 dB (or, greater than a factor of 10,000). We also verify that white-PM noise has uncorrelated PM-AM CPSD.