{"title":"SYNCTRACE:可视化线程相互作用分析","authors":"Benjamin Karran, Jonas Trümper, J. Döllner","doi":"10.1109/VISSOFT.2013.6650534","DOIUrl":null,"url":null,"abstract":"In software comprehension, program traces are important to gain insight into certain aspects of concurrent runtime behavior, e.g., thread-interplay. Here, key tasks are finding usages of blocking operations, such as synchronization and I/O operations, assessing temporal order of such operations, and analyzing their effects. This is a hard task for large and complex program traces due to their size and number of threads involved. In this paper, we present SYNCTRACE a new visualization technique based on (bended) activity diagrams and edge bundles that allows for parallel analysis of multiple threads and their inter-thread correspondences. We demonstrate how the technique, implemented as a tool, can be applied on real-world trace datasets to support understanding concurrent behavior.","PeriodicalId":392495,"journal":{"name":"2013 First IEEE Working Conference on Software Visualization (VISSOFT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"SYNCTRACE: Visual thread-interplay analysis\",\"authors\":\"Benjamin Karran, Jonas Trümper, J. Döllner\",\"doi\":\"10.1109/VISSOFT.2013.6650534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In software comprehension, program traces are important to gain insight into certain aspects of concurrent runtime behavior, e.g., thread-interplay. Here, key tasks are finding usages of blocking operations, such as synchronization and I/O operations, assessing temporal order of such operations, and analyzing their effects. This is a hard task for large and complex program traces due to their size and number of threads involved. In this paper, we present SYNCTRACE a new visualization technique based on (bended) activity diagrams and edge bundles that allows for parallel analysis of multiple threads and their inter-thread correspondences. We demonstrate how the technique, implemented as a tool, can be applied on real-world trace datasets to support understanding concurrent behavior.\",\"PeriodicalId\":392495,\"journal\":{\"name\":\"2013 First IEEE Working Conference on Software Visualization (VISSOFT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 First IEEE Working Conference on Software Visualization (VISSOFT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISSOFT.2013.6650534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 First IEEE Working Conference on Software Visualization (VISSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISSOFT.2013.6650534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In software comprehension, program traces are important to gain insight into certain aspects of concurrent runtime behavior, e.g., thread-interplay. Here, key tasks are finding usages of blocking operations, such as synchronization and I/O operations, assessing temporal order of such operations, and analyzing their effects. This is a hard task for large and complex program traces due to their size and number of threads involved. In this paper, we present SYNCTRACE a new visualization technique based on (bended) activity diagrams and edge bundles that allows for parallel analysis of multiple threads and their inter-thread correspondences. We demonstrate how the technique, implemented as a tool, can be applied on real-world trace datasets to support understanding concurrent behavior.