基于三种不同分类算法集成学习的情感文本分析

Wenshuo Bian, Chunzhi Wang, Z. Ye, Lingyu Yan
{"title":"基于三种不同分类算法集成学习的情感文本分析","authors":"Wenshuo Bian, Chunzhi Wang, Z. Ye, Lingyu Yan","doi":"10.1109/IDAACS.2019.8924413","DOIUrl":null,"url":null,"abstract":"In order to improve the accuracy and generalization performance of text sentiment analysis model, an integrated learning model is proposed in this paper, which includes three different classification algorithms - Logistic regression, support vector machine and K-Neighborhood algorithm. Compared with single classification algorithm, this algorithm shows better accuracy. The experimental results show that the model has good generalization performance and robustness.","PeriodicalId":415006,"journal":{"name":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Emotional Text Analysis Based on Ensemble Learning of Three Different Classification Algorithms\",\"authors\":\"Wenshuo Bian, Chunzhi Wang, Z. Ye, Lingyu Yan\",\"doi\":\"10.1109/IDAACS.2019.8924413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the accuracy and generalization performance of text sentiment analysis model, an integrated learning model is proposed in this paper, which includes three different classification algorithms - Logistic regression, support vector machine and K-Neighborhood algorithm. Compared with single classification algorithm, this algorithm shows better accuracy. The experimental results show that the model has good generalization performance and robustness.\",\"PeriodicalId\":415006,\"journal\":{\"name\":\"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAACS.2019.8924413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAACS.2019.8924413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

为了提高文本情感分析模型的准确率和泛化性能,本文提出了一种集成学习模型,该模型包括逻辑回归、支持向量机和k邻域算法三种不同的分类算法。与单一分类算法相比,该算法具有更好的准确率。实验结果表明,该模型具有良好的泛化性能和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emotional Text Analysis Based on Ensemble Learning of Three Different Classification Algorithms
In order to improve the accuracy and generalization performance of text sentiment analysis model, an integrated learning model is proposed in this paper, which includes three different classification algorithms - Logistic regression, support vector machine and K-Neighborhood algorithm. Compared with single classification algorithm, this algorithm shows better accuracy. The experimental results show that the model has good generalization performance and robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Optimum Placement of Access Points in Indoor Positioning Systems On Development of Machine Learning Models with Aim of Medical Differential Diagnostics of the Comorbid States Business Models for Wireless AAL Systems — Financing Strategies Accuracy Enhancement of a Blind Image Steganalysis Approach Using Dynamic Learning Rate-Based CNN on GPUs Human-Machine Interaction in the Remote Control System of Electric Charging Stations Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1