流估计中模型复杂度控制

Zoran Duric, Fayin Li, H. Wechsler, V. Cherkassky
{"title":"流估计中模型复杂度控制","authors":"Zoran Duric, Fayin Li, H. Wechsler, V. Cherkassky","doi":"10.1109/ICCV.2003.1238445","DOIUrl":null,"url":null,"abstract":"This paper describes a novel application of statistical learning theory (SLT) to control model complexity in flow estimation. SLT provides analytical generalization bounds suitable for practical model selection from small and noisy data sets of image measurements (normal flow). The method addresses the aperture problem by using the penalized risk (ridge regression). We demonstrate an application of this method on both synthetic and real image sequences and use it for motion interpolation and extrapolation. Our experimental results show that our approach compares favorably against alternative model selection methods such as the Akaike's final prediction error, Schwartz's criterion, generalized cross-validation, and Shibata's model selector.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Controlling model complexity in flow estimation\",\"authors\":\"Zoran Duric, Fayin Li, H. Wechsler, V. Cherkassky\",\"doi\":\"10.1109/ICCV.2003.1238445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a novel application of statistical learning theory (SLT) to control model complexity in flow estimation. SLT provides analytical generalization bounds suitable for practical model selection from small and noisy data sets of image measurements (normal flow). The method addresses the aperture problem by using the penalized risk (ridge regression). We demonstrate an application of this method on both synthetic and real image sequences and use it for motion interpolation and extrapolation. Our experimental results show that our approach compares favorably against alternative model selection methods such as the Akaike's final prediction error, Schwartz's criterion, generalized cross-validation, and Shibata's model selector.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238445\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文描述了统计学习理论(SLT)在流量估计中控制模型复杂性的新应用。SLT提供了适合于从图像测量(正常流)的小而有噪声的数据集中选择实际模型的分析泛化边界。该方法通过使用惩罚风险(脊回归)来解决孔径问题。我们演示了该方法在合成和真实图像序列上的应用,并将其用于运动插值和外推。我们的实验结果表明,我们的方法优于其他模型选择方法,如Akaike的最终预测误差,Schwartz的标准,广义交叉验证和Shibata的模型选择器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Controlling model complexity in flow estimation
This paper describes a novel application of statistical learning theory (SLT) to control model complexity in flow estimation. SLT provides analytical generalization bounds suitable for practical model selection from small and noisy data sets of image measurements (normal flow). The method addresses the aperture problem by using the penalized risk (ridge regression). We demonstrate an application of this method on both synthetic and real image sequences and use it for motion interpolation and extrapolation. Our experimental results show that our approach compares favorably against alternative model selection methods such as the Akaike's final prediction error, Schwartz's criterion, generalized cross-validation, and Shibata's model selector.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of static and dynamic body biometrics for gait recognition Selection of scale-invariant parts for object class recognition Information theoretic focal length selection for real-time active 3D object tracking A multi-scale generative model for animate shapes and parts Integrated edge and junction detection with the boundary tensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1